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PREFACE TO THE SECOND EDITION

SINCE this book was first published nine years ago it has
brought to the authors a steady flow of correspondence from
most parts of the English-speaking world. It has been most
gratifying to know of so many to whom the book has given
pleasure. It has been most helpful to receive criticisms, and
suggestions for improvement, which have sprung from prac-
tical experience in universities and in every type of school, and
which have come from both staff and pupils. Many of these
suggestions have been incorporated in this new edition. Three
correspondents in particular should be gratefully mentioned:
Mr. Dorman Luke, of West Palm Beach, Florida, Mr. A. R.
Pargeter of Southampton, and Mr. R. F. Wheeler of Hull, to
whom much new material is due.

Little of the old edition has disappeared—chiefly what was
proved to be less practicable. The major addition is Chapter VI,
on Logic and Computing, which it is hoped will be found useful
as an introduction to a fascinating field of considerable topical
interest and importance. Part of this, and certain other material,
has already appeared in The Mathematical Gazette, to the Editor
of which our thanks are due for ready permission to reprint.

A special word of thanks must be reserved for Mr. R. W,
Ford, who prepared all the drawings for this book ; his ready
co-operation and skilful draughtsmanship reveal the patience
of the true craftsman and their monument is to be seen on
almost every page. Words of ours would be superfluous to
commend the care and skill of the staff of the Clarendon Press;
for their courtesy and encouragement we would subscribe our
warmest thanks.

H. M. C.

A. P. R.
1960






PREFACE TO THE FIRST EDITION

‘I HAVE often been surprised that Mathematics, the quint-
essence of Truth, should have found admirers so few and so
languid. Frequent consideration and minute scrutiny have at
length unravelled the cause; viz. that though Reason is feasted,
Imagination is starved; whilst Reason is luxuriating in its
proper Paradise, Imagination is wearily travelling on a dreary
desert. To assist Reason by the stimulus of Imagination is the
design of the following production.’

So wrote S. T. Coleridge to his brother in 1791, when he him-
self was a boy of 17 at Christ’s Hospital. The ‘production’ to
which he refers was a problem of Euclid, expressed in verse. If
the words are in any sense an apt introduction to this present
work, it is a different kind of imagination to which it must lay
claim, and, one may add, a more essentially mathematical kind.

This book was born in the classroom, and arose from the
spontaneous interest of a Mathematical Sixth in the construc-
tion of simple models. A desire to show that even in mathe-
matics one could have fun led to an exhibition of the results and
attracted considerable attention throughout the school. Since
then the Sherborne collection has grown, ideas have come from
many sources, and widespread interest has been shown. It
seems therefore desirable to give permanent form to the lessons
of experience so that others can benefit by them and be en-
couraged to undertake similar work.

A word may be added here about the functions of the respec-
tive authors. Between them their experience extends from 1927
to the present time, and they have made or supervised the
making of practically every model mentioned in this book.
The second author provided the initial stimulus for much of
the work and also a constant flow of ideas and inspiration.
The actual writing has of necessity devolved mainly upon the
first author, and he is responsible for the presentation of the
material. But the book is in a real sense a joint effort, though
not perhaps a collaboration of the orthodox type.
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The authors are indebted to Mr. B. J. Banner for his photo-
graphs of the regular and Archimedean polyhedra: to Messrs.
Newton and Co. for diagrams of curves drawn with the twin-
elliptic pendulum: to Professor H. S. M. Coxeter for some of
the drawings and for his friendly interest and encouragement:
to Mr. F. G. Mee for reading the proofs: and finally to the staff
of the Clarendon Press for all the help and advice that they have
given. The provenance of ideas can never be fully acknow-
ledged, but the reader who is familiar with the books listed in
the Bibliography will recognize all too readily the origin of
much that is contained in the following pages. There is here
very little originality of concept, but only that originality which
inheres in anything that is individually made. And this the
authors hope will be as much the reader’s as their own.

H. M. C.

A. P. R.
Sherborne, 1951
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I

THE USE AND CONSTRUCTION OF
MODELS

MATHEMATICS is often regarded as the bread and butter of
science. If the butter is omitted, the result is indigestion, loss
of appetite, or both. The purpose of this book is to suggest
some ways of buttering the bread. The human mind can seldom
accept completely abstract ideas; they must be derived from,
or illustrated by, concrete examples. Here the roader will find
ways of providing for himself tangible objects which will bring
that necessary contact with reality into the symbolic world of
mathematics.

1.1. WHAT 1s A MODEL?

In theory, any figure drawn on paper is a tangible aid to the
understanding, and there would be some justification in includ-
ing this in the title, for the earliest use of the word ‘model’
denoted a set of architect’s plans. We shall, however, include
here only such figures as possess intrinsic interest and are out-
side the ordinary run of figures which are easily available else-
where. We are more concerned with solid objects, ‘figures’ in
solid geometry, moving diagrams, and mechanisms. The plane
models we shall describe are for the most part made of paper
or card, as distinct from figures made of ink on paper. There is,
however, a section (2.4) on curves and loci, included for their
peculiar interest. The models relate mainly to ‘elementary’
mathematics, though there are some that stand outside the
ordinary work in a school. The reader is well advised to see the
collections of models in places like the Science Museum, or some
university mathematical departments, but our aim here is rather
less ambitious.t

t There is a beautiful collection of polyhedral models in wire and cardboard

at Winchester College. These were made by three boys, F. J. Dyson, M. S.

and H. C. Longuet-Higgins, two of whom have later become university
professors.
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1.2. TuE USE oF MODELS

The main use of a model is the pleasure derived from making
it. When it is made it can be used to demonstrate the fact
which it illustrates. Finally, it may form part of a permanent
collection of similar constructions. People have collected many
stranger things than polyhedra on occasion. If words must be

"found, we can describe these uses as the creative, demonstrative,
and collective uses of models.

The creative value of a model is there for anybody who will
take the trouble to make it. A mathematician who cannot
express himself in other ways may be able to make an attractive
model, and to make it well. In many cases great technical skill
is not required, and some of the most complicated models
described in the following pages require nothing beyond care
and patience. Further, the materials are not usually expensive,
and even scrap can often be used. The keen model-maker is
always on the look-out for possible raw material.

The demonstrative use of the model will appeal more to the
professional teacher of mathematics. There is no doubt that
we all appreciate and remember much more easily the properties
of something we have actually seen; even more so if we have
actually made it.

Some models in this book are suitable for ‘mass production’
by a class; others are more suitable for demonstration. The wise
teacher will know best how to use any particular idea which he
finds here and we have not felt it our duty to tell him. We only
hope that plenty of ideas will be found.

The collective value of models is associated with a personal
collection, or a mathematical exhibition. To set out to make for
oneself a full set of regular and Archimedean polyhedra, or
examples of all the quadric surfaces, or even a complete set of
sketches of the various types of cubic curve, is a hobby which
satisfies one’s acquisitive instinct, demands patience, teaches
skill, and can bring much pleasure. A good mathematical ex-
hibition always arouses interest. It is an opportunity for many
to participate; it stimulates enthusiasm and an awareness of
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the aesthetic value of mathematics, as well as its pervasiveness.
It is a mistake to suppose that what is not fully understood is
dull or will not attract attention: many enjoy a fugue without
understanding the technicalities of its structure.

1.3. MATERIALS FOR MODELS

Suitable material for each model described in the following
pages is usually suggested with the description. In general no
elaborate materials are required. Except of course for exhibition
purposes, crudeness of construction is no drawback to the use-
fulness of a model, and may even be an advantage in stimulating
someone else to do better! The best models are those which
are made from things which are ready to hand. The following
suggestions may be useful.

1.3.1. Material suitable for flat sheets can be obtained from
backs of old exercise books, manilla filing folders, cartridge paper,
plain postcards, or pasteboard in various thicknesses. An oblig-
ing printer may be able to supply offcuts. More durable sheets
can be made of sheet metal, cut from old tins and cans, hardboard,
or plywood. Thick plasterboard is useful for building up a layered
surface: i.e. a relief map from contours. Glass, celluloid, and
‘Perspex’ have the advantage of transparency; polythene sheet-
ing can now be bought fairly cheaply.

Disks can be made from toy wheels, plastic saucers, and the
like. Broken plastic beakers can have their bases cut off with a
hacksaw and polished up with glasspaper. Cork mats have their
uses—they do not slip so easily as plastics.

Straight lines can be embodied in a variety of ways: embroidery
thread (coton a broder), coloured twine, plastic (polyvinyl) thread,
‘Shirlastic’, nylon fish-line, round elastic, and gut; rigid lines can
be made of knitting needles, drinking straws (for temporary
display!), ‘Meccano’ or ‘Bayko’ rods, cocktail-sticks or skewers;
curved lines from piano wire or plastic-covered electrical
wire.

‘Meccano’ is an obvious source of straight and curved strip;
thick card, metal strip, steel strapping from crates, dowel-rod,
miniature railway rail, curtain rail (flat or T -section), all come
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in useful. Circular rings are everywhere, from the steel washer
to the hula-hoop. To join flat links, use paper-fasteners, eyelets,
or gut rivets, made by heating the ends of short lengths of violin
string. Drawing-pins, especially those with coloured heads, are
always handy.

1.3.2. Adhesives are legion. Quick-drying cements like Balsa
cement or clear ‘Bostik’ are most useful; so are impact adhesives
such as ‘Evostik’ or the epoxy resinssuch as ‘Araldite’. ‘Durofix’
is best for celluloid, or use a solvent such as amyl acetate; for
‘Perspex’, use ethylene dichloride, or the cement supplied by the
manufacturers. Nail-polish remover (acetone) can also be used
for some plastics. Glass is awkward to cement, though Canada
balsam or glass cement can be used.

1.3.3. Tools, etc.

Razor blades and steel rule TIile

Coping-saw Plane

Fine tenon-saw Hammer

Hack-saw Screwdriver

Wheelbrace and drills Shears and scissors

Compasses Wire-cutters

Eyelet punch Glass-cutter

Soldering iron and cored Glass-paper and emery cloth
solder Household scouring powder

Small cramp Metal polish

1.3.4. Pegboard. Thisis a most useful material for graphical
displays of all kinds. To make the most of it, a sheet should be
permanently mounted in a frame, and painted with lines at
intervals of 5 and 10 holes like ordinary squared paper. Pegs
with solid heads can be obtained in various shapes and colours.
Some should have their heads drilled to take wire or elastic; if a
few have two holes drilled at right angles they will serve for
double-points of curves. Points can be ‘plotted’ with pegs with
great rapidity. The only restriction is, of course, that coordinates
must be an integral number of units. If piano wire is then
threaded through the drill-holes a surprisingly accurate curve
is obtained with no trouble at all. Elastic (round) serves for
straight lines. Letters and figures which can be pegged directly
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into the board can be obtained from firms of shopfitters. The
possibilities of a little quite simple equipment for striking displays
are endless.

1.3.5. Miscellaneous. Most models look better if well
painted. Metal strips are best painted with quick-drying dopes;
cardboard with enamels (high-gloss paints); flat diagrams with
poster-paints Use good brushes, and keep separate those used
for the various kinds of paint. Gummed sheets of coloured
paper can be bought and are sometimes useful. Plastics are
self-coloured, and different coloured threads, sheets, and wire
should be obtained if required

The Meccano and Trix systems are flexible and therefore
useful. A good thread-cutting die for metal rod or knitting-
needles, etc., is a sound investment, but be sure that you can
get nuts easily to match the thread. Balsa wood, beloved of
the model aircraft enthusiast, has limited applicability in this
field. Its extreme lightness is not needed, and the ease with
which it is broken or deformed is a grave disadvantage. But
the balsa wood cement is very useful since it dries rapidly.

It is not, of course, suggested that all these things are neces-
sary, or that the model-maker should begin by laying in a stock
of them all. The best way is to get started and buy things only
as you need them. Many of these things need not be bought
at all, since models can often be made from scrap or pieces
which are too small for any other purpose. On the other hand,
good tools are worth having, and will long outlast cheap or
‘toy’ substitutes.

The appearance of a model depends to a great extent on small
details. For exhibition purposes where the best results are
desired, accurate work is essential, and careful attention must
be given to ‘finish’. Good, even painting needs care and practice.
Polishing requires patience. It is worth mentioning that all
household cleansing-powders, in spite of the advertisements
which boost their non-scratch properties, are excellent mild
abrasives, used slightly damp, and will grind glass finely if
rubbed between two panes. They are also useful for rubbing
out scratches from metal or ‘Perspex’, leaving a fine matt surface
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which can be worked smooth if desired with metal polish. The
human palm is the best polishing base!

A collection of models will need labelling. Advice can be
sought from an artist or from books on the subject of lettering,
but again practice and clean straight strokes are the best recipe
for attractive results.
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MODELS IN PLANE GEOMETRY

2.1. DISSECTIONS
T HE fascination of dissection is universal. To substantiate this
statement we have only to call to mind the popularity of the
jig-saw puzzle, the frequency with which dissection puzzles still

/ /]
5

appear in illustrated papers, and the continued sale for mosaics
and similar toys. As a diversion we give diagrams of two of
these. The first is the famous Chinese traditional pastime known
as tangrams which used to be, and perhaps still is, marketed
by a firm of toy manufacturers in this country. The square
shown in the diagram (Fig. 1) is dissected into seven pieces: a
small square whose side we take as the unit; five isosceles right-
angled triangles, one with hypotenuse 2 units, two with unit
equal sides, and two with equal sides of 2 units; and a parallelo-
gram with unit base and unit height, the angle between two
of its sides being 45°. From these pieces a large number of
figures can be made, two of which are given as examples.
A more ambitious design is shown in Fig. 2; in this case an egg
is dissected and rearranged to form the outline of various birds;
again a variety of other objects can be produced with a little
ingenuity. A puzzle of this type was on the market several

Fic. 1
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years ago; the outlines only of various figures were given, the
object being to construct them from the pieces. It has been
claimed that a feeling for congruence and incommensurable
lengths can be obtained by such means. These designs can be
cut very easily from thin plastic if a permanent set of pieces
is required.

2.1.1. Area dissections. These dissections are used to show
the equivalence of figures in the theory of area. They can be
cut from paper or thin card. In most cases the construction of
the figures is simple enough for beginners in the study of area
to perform the dissections for themselves. Fig. 3 shows a
method of demonstrating the equivalence of parallelograms on
the same base and between the same parallels. A rectangle
ABCD is first cut from card, or a postcard may be used.
A straight cut removes the triangle AXD, which can be laid
down so that AD falls along BC; in this way the parallelogram
PQRS is built up. Different cuts from equal postcards will lead
to different parallelograms, but all have equal bases and heights.
The formal proof follows at once.

2.1.2. Area of a triangle. The fact that the area of a triangle
is half that of a parallelogram on the same base with the same
height follows immediately from the fact that two congruent
triangles can actually be fitted together to form the parallelo-
gram.

There is, however, a direct way of dissecting a triangle to
form a rectangle. Fig. 4 makes the construction clear: X, ¥
are the mid-points of A B, AC, and AN is perpendicular to XY
It is of course necessary for the angles at B and C to be acute.
The important fact also emerges from this dissection that XY
is parallel to BC. Further, by moving the triangle LX B so that
LB lies along M C, the method of proof is indicated.

A neat way of showing this same dissection is by folding.
Cut the triangle 4 BC out of paper (Fig. 5) and fold along X7,
XP, YQ. The resulting figure is a doubled rectangle XY PQ.
Incidentally, another important fact emerges, namely, that the
sum of the angles A, B, and C is 180°, since these three angles
exactly fit together, after the folding, at D.
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2.1.3. Area of a trapezium. Three dissections are shown in
the diagrams which demonstrate the formula for the area
in each of the three forms 4{h(a+b)}, hx }(a-+b), 3k X (a+b).
In Fig. 6 two congruent trapezia are used, together making the

=

CcQ P
Fi1c. 6
A B A B
’ v\
N
D C D C
Fic. 7
1 x
5 3 %

Fic. 8

parallelogram of area h(a-+b). In Fig. 7 only the one trapezium
is used; the points X and Y are mid-points. In each case the
trapezium is cut into two parts which are rearranged to form
a parallelogram; in the first case the height is 2 and the base
1(a+b); in the second the height is 4% and the base (ab).
2.1.4. Theorem of Pythagoras. There are many proofs of
this famous theorem which involve dissection; the best known
is probably Perigal’s, shown in Fig. 8. This is, however, a diffi-
cult dissection to carry out and its correctness is not easy to
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demonstrate formally. A simpler demonstration is shown in
Fig. 9 which gives the equivalent squares as the difference
between a fixed square and four movable triangles. To make
a model, four set squares can be used for the triangles and a

hollow square frame of the correct dimensions cut to accommo-
date them.

Neither of these dissections is connected with the Euclidean
proof, which proceeds on quite different lines. Fig. 10 shows
in visual form the equivalence of areas involved in this proof,
but an actual dissection based on it would have eight pieces,
whereas the two preceding figures involve only five.

2.1.5. General dissection. It can be shown that if two
rectilinear figures are equivalent, each can be dissected into a
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finite number of pieces which can be rearranged to form the
other.t This is in general a complicated procedure, but some
particular cases are attractively simple, one of which is shown
in Fig. 11. Here an equilateral triangle is dissected into four
pieces only which can be rearranged
to form the equivalent square.

First find the side of the square by
the usual construction as the mean
N M proportional between half the base
and the height of the triangle. Let
M, N be the mid-points of AC and
AB. Cut off MX, with X on BC,
equal to the side of the equivalent
K: X H, square. Cut off XL = {BC, and
1 drop the perpendiculars LH, NK
5 N from L, N to MX. If the four result-
N L ing pieces are hinged at L, M, N and
rotated, they can be closed up into
the square K, K, H, H, as in the

K M second diagram. The formal proof

Fie. 11 is left to the reader, and shows in-

cidentally that KX = HM. A model

can be made of metal plates; accurate work will be needed in
making the hinges.

Further examples of dissection of this general type can be
found in Kraitchik, Mathematical Recreations, pp. 193-8.

2.1.6. Puzzle dissections. H. E. Dudeney was a master-
hand at producing puzzles of this type. His dissected-T puzzle
is on the market today, in red plastic. Other well-known puzzles
of his are: to cut a Greek cross into 4 or 5 pieces which can be
rearranged to form a square; to cut two Greek crosses into 4 or
5 pieces which can be rearranged to form a square; to cut a square
into 5 pieces which can be rearranged to form an octagon.
Solutions are shown in Figs. 12 and 13.

This last example is interesting because it depends on a general

A

‘;1

1t A. Mineur, Mathesis (1931), pp. 160-2; Rouse Ball, Mathematical Recrea-
tions and Essays, revised by Coxeter, pp. 89-91.
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idea. If two regular patterns—in this case one of squares and
octagons (4.8% Fig. 57) and another of two different sizes of
square—with the same area of unit cell are superposed, a dis-
section of the unit cell of one into the unit cell of the other can

4 pieces 4 pieces 5 pieces
+ or +
4 pieces 5 pieces
Fig. 12
Fic. 13

be obtained. The patterns are best drawn on tracing paper and
suitable positions can be found by trial. The Greek cross dis-
sections can also be obtained in this way, by superposing a
pattern of squares of side v/5 on one of unit squares.

2.1.7. Similar figures. An interesting dissection is shown
in Fig. 14 in which a dodecagon is cut into twelve congruent



26 MODELS IN PLANE GEOMETRY II

pieces, which can be added to an equal dodecagon to make a
similar figure with an edge v2 times as great. Each piece is an
equilateral triangle plus half a square; six of the pieces must
be turned over.

(&

Fic. 14

OB

Fi1c. 15

The same thing can be done with three hexagons: two are
cut up, each into six congruent pieces, but different in the two
cases (Fig. 15). The original hexagon together with these twelve
pieces can be reassembled to form a hexagon of side +3 times
that of the original ones.

Dissections of an area into four areas, congruent to one
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another and similar to the original, but with half its linear
dimensions, are numerous.}

These provide elegant verifications of the law which states
that the areas of similar figures are in the ratio of the squares
of corresponding linear dimensions.

2.1.8. Pentominoes. This is the name given in America to
a puzzle which has recently been on sale in this country. It
consists of a set of 12 plastic pieces, which represent all the ways
of arranging five squares in a single unit. The puzzle as supplied
isin a box in the form of a 10 X 6 rectangle; the pieces can be fitted
into this in 2,339 distinct ways, so that it is not too difficult to
find a solution. But there are other interesting figures to be
made; a 3 X 20 rectangle is not too difficult (there are two);
and there are 65 ways of constructing a square 8 X 8 with the
aid of one central 22 ‘tetromino’. The diagram (Fig. 16)
shows a 10 X 6 rectangle and an 8 X 8 square. Other diversions
with these pieces can readily be invented. They have a strange
fascination.

2.2. TuE CIRCLE

Practical models of the circle are of such everyday occurrence
that there is no need to construct any special ones. In particular,
the value of 7 can be calculated by measuring the length of a
thread wound round a can, or the distance described by a bicycle
wheelin a definite number of revolutions. Alternatively, knowing
the value of =, the accuracy of the usual revolution-counter type
of cyclometer can be tested. On the old 28-inch wheel, a speed
of 5 m.p.h. gives almost exactly one tick per second; the modern
26-inch wheel gives slightly more.

It is possible to set up most of the geometrical theorems
relating to the circle by means of a board on which a circle is
painted, with tacks or gimp-pins driven in at intervals round
its circumference. Extra pins are provided at the centre and
along tangents and secants; straight lines are made by looping
elastic thread over the pins. This apparatus is widely used in
America under the name of ‘theorem-board’.

t See, for example, Math. Gazette, 24 (1940), 209.
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A set square between two pins will demonstrate the constant
angle property, but Fig. 17 illustrates a more ambitious device

B

7o centre O
A To 91 @3

Bolt with
— lock-nuts

-Metal plate soldered
Lo strips AF, QP

Fic. 17
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which also shows the alternate segment property and the ex-
terior angle of a cyclic quadrilateral; it is well worth the trouble
involved in construction. The circle A BC and the lines A B, BC
are painted on card which is then glued to a stout board. AP,
OP, CP are movable rods, hinged at P and O and running in
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hinged guides at 4 and C. The rods are conveniently made of
metal strip and the guides can be made from the flat joining
sleeves for brass curtain rod. In order to enable the point P to
pass through C (at which point the alternate segment theorem
is shown) into the position indicated by dotted lines, the guide
at C must have free travel down the whole rod CPQ. One way
in which this can be arranged is shown. The guide must have a
groove to take the lock-nut, or the latter must be recessed in
the strip.

2.3. CircULAR FUNCTIONS

There are several ways of showing the meaning of the three
simple trigonometric functions. The easiest is probably the
tangent, which comes first in many courses of study. A simple
device can be made which shows the value of the ratio and the
reason for its name (Fig. 18). Construct a circle divided into
degrees, and a long strip hinged at the centre. With the radius
as unit, mark off a uniform scale, positively and negatively,
along the tangent at the zero of angles. The tangent of the
angle to which the strip is turned can be read off from this scale.
If a similar scale is marked on the rotating strip, the secant can
be read off at the same time.

The sine and cosine take a little more trouble to demonstrate.
One method involves the use of the angle in a semicircle (Fig.
19). A circular disk is pivoted about a point on its circum-
ference so that it moves within a circle of twice its size. The
sine and cosine can then be read off from the intersections of
its rim with two perpendicular diameters of the fixed circle.

It makes the projections clearer, however, if the actual per-
pendiculars can be seen. For this purpose the semicircle is
replaced by a rotating arrow carrying at its point a pivot on
which two cross-wires, soldered at right angles, are fixed (Fig.
20). If a lead bob is attached to one of these and the whole is
mounted vertically, the sine and cosine can be read off. These
instruments have the great advantage of making clear the
reasons for the sign conventions for the trigonometrical ratios
of angles of any magnitude; also they lead easily to the use of
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coordinates and to the parametric form for the circle x = a cos 6,
y = asinf. An instrument of this kind is shown in Plate 4a.

2.4. Loci AND ENVELOPES
Though not strictly ‘models’, since few of them require any
apparatus beyond the usual instruments, a set of well-drawn
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loci and envelopes adds greatly to the effectiveness of a mathe-
matical exhibition. It will not therefore be out of place to
include a short section on the subject. (It could of course be
argued that any drawing is a ‘model’.)

2.4.1. Simple loci. As examples of loci plotted pointwise
by geometrical construction the following may be included:

The circle of Apollonius r = kr'.
. .| The ellipse and hyperbola  r47" = constant.
Bipolar loci Cassini’s ovals rr’ = constant.
Cartesian ovals (2.4.3) r-+kr’ = constant.

The parabola, from the definition SP = PM.

Q

\

0
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The cardioid and limacgons, plotted by making P@ constant
(positive or negative) on the variable secant OPQ (Fig. 21).
The cardioid results when PQ = 04, the open limagon when
P@Q > 0OA, and the limagon with a node when PQ < OA.

The cissoid, obtained by cutting off OX = PR (Fig. 22).

The conchoids are the curves r = asec 04b. They are obtained
by drawing secants through O to meet a fixed line BA B’ at R (see
Fig. 23). If 04 = a, and constant lengths

RY = RZ =)
are cut off from the secant, the loci of ¥ and Z together form

the conchoid. Different members of the family obtained by
varying the value of b can be drawn in the same figure. Forb=a
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the conchoid is the conchoid of Nicomedes, and has a cusp at O.
If b > a, there is a loop.

The limagons are obtained by a similar construction, replacing
the line BAB’ by the circle on OA as diameter. The secant

o
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OR is extended each way by a length b as before. The equation
of the resulting locus is r = acos+b. When b = a, the curve
has a cusp and is the cardioid; when b < a, there is a loop.

2.4.2. Loti using apparatus. A number of loci are most
easily drawn continuously with the aid of special apparatus.
There is no need for this to be unduly complicated: for example,
the cycloid can be drawn by a piece of chalk attached to a tin-
lid which is rolled along a ruler. Similar methods can be used
to produce trochoids and epicycloids.

In the case of epicycloids it helps to have a slightly more
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elaborate apparatus in which a link connects the centres of the
rolling and fixed circles, and an endless thread in the form of
a figure 8 passes round the disks to prevent slipping (Fig. 24).

Pointer

Fic. 24

The ellipse can be drawn with a Trammel of Archimedes—
a pointer attached to a rod whose ends slide in perpendicular
grooves—or, most simply, with a loop of thread enclosing the
pencil point and two fixed pins. An elegant refinement of this
latter method is as follows. Mount the pins on a board attached
to a horizontal axle so that it can be rotated in a vertical plane.
Replace the pencil point by an eye from which a bob hangs. As
the board is rotated, the eye describes the ellipse (Fig. 25). If,
in addition, a short horizontal tangent is attached to the eye,
the law of equal angles is demonstrated and shown to be derivable
from statical principles.

Conics can also be drawn by Newton’s method, which depends
on the properties of projective pencils. Two angles of constant
magnitude are hinged at their vertices (Fig. 26). If one point
of intersection is made to describe a line, the other will describe
part of a conic. The proof of this depends on a basic result in
projective geometry, but it is often useful to let coming events
cast their shadows before. (To draw a complete curve requires
trammels passing through the vertices of the angles.)

A great many curves can be drawn with simple linkages,
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A full discussion of these is reserved for Chapter V, to which
the reader is referred.

Fic. 26

2.4.3. The Cartesian ovals. These are the curves given by
the bipolar equation r4-kr’ = constant. Each curve consists
of a pair of ovals, one inside the other, but only one can be
described with a positive value of k. If k is rational with small
numerator and denominator, the curve can be described with
pins and thread. The curves have the interesting property of
possessing a third focus; i.e. there are three points in a line such
that the equation of the curve referred to any two of them is
of the form r4kr" = ¢, with different values of k and ¢ accord-
ing to which pair of foci is chosen.}

Fig. 27 shows a convenient set of ratios for which all three
foci may be shown. F, F, = 4 units, F, F; = 1 unit. The equa-
tion referred to F, F, is r,+4r; = 10; referred to F,F, it is
ry+2r; = 4. (The equation connecting r, and r, is r,—2r, = 2,
and cannot be demonstrated with looped thread, since it in-
volves a negative k.) . The other two equations can be demon-
strated as in the figure. The threads are looped through rings
at P, @, and F,. With persuasion and, preferably, nylon thread,
each ring will be found to describe the same oval.

It is possible to demonstrate all three equations with the aid
of an axle mounted behind the board as shown in the diagram,
The strings must be initially adjusted so that P is on the oval;

t See, e.g., R. C. Lyness, Math. Qazette, 36 (1952), 315, note 2270.
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the parts of the axle have diameters in the ratio 4:2:1, and the
strings are wound in the sense indicated, so that #, = —47,,
Fo = —2f4, ¥, = 2F,, and P describes the oval if the strings are
maintained taut.

o
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Another possible set of equations is r,+2r; = 9, r,+3r; = 16,
2r,—3r, = 5 with K| F, = 5, F,F, = 3. Here the axles must
have diameters in the ratio 3:2:1.

A list of equations of miscellaneous loci is given at the end
of this chapter.

2.4.4. Envelopes. A well-drawn envelope is much more
attractive than a locus. In addition it is usually much easier
to draw, since comparatively few ruled lines yield a reasonable
result. It isthe more surprising that so little attention is usually
paid to envelopes. Some of the more simple examples are illus-
trated here.

The ellipse and hyperbola are obtained as negative pedals of
a circle; i.e. the envelopes of P, where S is fixed, P moves on
a fixed circle, and the angle SPQ is a right angle. (Figs. 28, 29.)
The ellipse results when S is inside, and the hyperbola when §
is outside the circle. (If § is on the circle the envelope is the
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diametrically opposite point.) The two asymptotes to the hyper-
bola are the diameters perpendicular to the tangents from S to
the circle.

Fic. 29
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The parabola is obtained in the same way when P moves along
the fixed straight line XY (Figs. 30, 31).

These envelopes can also be obtained by paper-folding (see
2.7.3 below).

S \
Y
Fic. 30 Fic. 31

The astroid, or four-cusped hypocycloid, is the envelope of
a line of constant length whose ends move on two perpendicular
lines. In other words, it is the curve enveloped by the sliding
ladder (Fig. 33). Since the instantaneous centre for the rod’s
motion is at I (Fig. 32), the point of contact of the rod with
its envelope is at N, the foot of the perpendicular from I to
the line. It is an interesting exercise to prove that the locus of
N is the four-cusped hypocycloid formed by rolling the circle
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IKN on the inside of the circle with centre O and radius
Ol = LM,

FiG. 32

Fic. 33

The deltoid, or three-cusped hypocycloid, occurs as the en-
velope of the pedal (or Simson’s) line of a variable point on the
circumcircle of a triangle (Fig. 34). To obtain it by constructing
these lines calls for careful drawing. It is simpler to use a
construction which can be used for any epi- or hypo-cycloid.
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Draw a circle, which will be the circumcircle for an epicycloid
and the incircle for a hypocycloid. Divide it into a large number
n of equal arcs, say n = 36, or, for a curve with several cusps,

Fic. 34. THE DELTOID AS ENVELOPE OF SIMSON'S LINE

A BC is the triangle, N the nine-point centre, and H the orthocentre.
The altitudes are the pedal lines of the vertices and the sides those of
the diametrically opposite points. In addition to these six lines, and
the three pedal lines of the points where the altitudes meet the circum-
circle, the tangents to the deltoid from points at intervals of 30° on
the circumference of the nine-point circle are shown in the figure.

= 72. Number the points obtained from 0 upwards. An
epicycloid with (k—1) cusps is obtained as the envelope of the
chords joining 1 to £, 2 to 2k, 3 to 3k, etc., the multiples being
reduced modulo . A hypocycloid with k+1 cusps is obtained
by joining 1 to —k (again mod n), 2 to —2k, etc., and producing
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the resulting secants. This will need more care in drawing and
in the initial marking out.

The nephroid can be drawn by this means as a two-cusped
epicycloid. This is the familiar curve seen in the tea-cup on
a sunny day, i.e. the ‘caustic by reflection’ for rays of light
reflected in a semicircular mirror.
If such a mirror is available, it
makes a very pretty pattern if a
beam of light is passed through a
set of parallel narrow slits—for ex-
ample, a comb, or a glass plate on
which thin strips of passe-partout
have been gummed. Mount the Fic. 35
mirror with its axis parallel to the
rays so formed, and the caustic with its enveloping rays will
be clearly seen on a shaded background. To show that it is

indeed the epicycloid, notice (Fig. 35) that if A/O\P = 6, then
-\ VA VAN N\ VN
OPN = OPL = OQL = }n—0, so that POL = QOL = 6 and

A/O\Q = 30. Thus the envelope is obtained by joining the points
P, 3p in the above construction. The actual caustic runs only
from 8 = 0 to 8 = =, giving half the nephroid, and is shown in
Fig. 36, but the full curve is obtained by continuing from 6 = =
to 27.

The cardioid is the epicycloid with one cusp; it can be obtained
as an envelope by the above construction: as a locus as the
conchoid of a circle—draw chords from a fixed point of the circle
and extend them a distance equal to the diameter of the circle:
or it can be drawn by a linkage described in Chapter V. It is
the reflexion caustic of a circle when the source of light is on
the circumference, as is easily shown.

There are, finally, the projective envelopes obtained by join-
ing points of homographic ranges; the simplest is the parabola
obtained by joining points of congruent ranges, say (p,0) to
(0, k—p) for fixed k, the axes being not necessarily rectangular.
Further, in the circle described above, the chords joining 0
to p and k to k—p, for fixed k and variable p, meet on a
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rectangular hyperbola. This latter curve is more easily obtained
as the envelope (and locus of mid-point) of the line joining
(p, 0) to (0, k/p) on rectangular axes.

Fic. 36

2.4.5. Circular envelopes. When the parabola is drawn,
we construct the circles with centres on the curve and which
pass through the vertex; they envelop the cissoid (Fig. 37).
In a similar manner if we construct the circles with centres on
the rectangular hyperbola and passing through its centre, the
resulting envelope is the Lemniscate of Bernoulli (Fig. 38); a
result as unexpected as it is pleasing.

In general the envelope of circles through a fixed point with
centres on a given curve is a curve similar to the pedal of the
given curve with respect to the given point. For example, if
the given curve is a circle, the envelope will be a limagon, and
in particular, if the point is on the circle, a cardioid.

A further circular envelope worth drawing is the envelope
of circles on parallel chords of a fixed circle as diameter; it is
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an ellipse with additional circles converging towards its foci,
and in fact is the flattened plane form of the model discussed
in 4.3.6.

2.5. CURVE-STITCHING
One very old method of expression work in mathematics,
and one which affords a welcome change from ‘the tyranny of

(b)

Fi1c. 39

pencil and paper’, is that of curve-stitching. It seems to have
originated in a book by Mrs. E. L. Somervell, entitled 4 Rhyth-
mic Approach to Mathematics, published in 1906 and now long
out of print. The idea hasrecently beenrevived, both in America
and in this country. Basically it consists of constructing
straight-line envelopes by stitching with coloured threads
through a pattern of holes pricked in cardboard. Small children
and quite advanced geometers can find in this work a satisfying
form of expression. Beginners of course must have their patterns
ready-made; but very little knowledge is required to enable
pupils to construct their own.

The simplest patterns are obtained by joining holes which
are equally spaced on straight lines or circles. In the case of
two straight lines the resulting envelope is the parabola. More
complicated curves result from the use of circles.

The designs in Figs. 39 (a)-(c) are reproduced from Mrs.
Somervell’s book; an endless variety of modifications can of
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course be made. The one rule which must invariably be fol-
lowed is that on the reverse side of the card the thread is always
taken to the adjacent hole on the pattern (as indicated in Fig.
39 (a), by dotted lines); on the right side the thread goes across
to the next unoccupied hole on the far side of the design.

Fi1c. 40

Once the fundamental idea of the method has been mastered,
anyone interested can construct his own designs. Exact alge-
braic curves will usually need unequal spacing of the holes and
therefore more calculation will be required to produce them;
it is surprising, however, what a variety of beautiful figures can
be executed which are based on the simple principle of equal
spacing.

The curve of pursuit is another possibility worked out by the
originator of the method. This has the disadvantage that the
holes for the stitches cannot be pricked beforehand, but it is
in a way an advantage that the curve ‘grows’ as the stitches
are made with all the fascination of a new discovery.

For example, suppose a dog chases a hare running on a
circular track. An approximate curve of pursuit is stitched as
follows (approximate because it is formed in finite steps instead
of by a continuous process—a difference which introduces the
idea of a limit). Suppose the dog is at A and the hare at B
(Fig. 40). Stitch AB to represent the dog’s intention. With
dividers set to a fixed length mark off AP, along the stitch, and
with the same interval, or with a fixed multiple of it, mark off
BB, along the circle. The next stitch returns on the underside
to P, and goes from P, to B, (the dog’s new intention). Then
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P, P,, B, B; are marked off and the stitch returns to P, and
then from P, to B;, and so on. This is more difficult to execute
than the parabola, but interesting curves are obtained.

2.6. ROULETTES AND INVOLUTES

2.6.1. A roulette is the curve generated by a point which is
carried by a curve which rolls on a fixed curve. Particular
examples follow. The locus of a
point carried by a circle rolling
on a straight line is a trochotd. If
the point is inside the circle the
trochoid has inflexions; if it is
outside the circle, but rigidly
attached to it, the trochoid has
loops. This is the answer to the
old catch-question, ‘Which parts
of a train are moving in the op-
posite direction to the train as a
whole?’ In the particular case
when the point is on the circum-
ference of the rolling circle the
roulette is a cycloid. When the
circle rolls on the outside of an-
other circle the corresponding
curves are the epitrochoids and
eptcycloids; if it rolls on the in-
side, they are the hypotrochoids
and hypocycloids. Methods of
drawing these curves as loci or envelopes have been discussed
in 2.4,

2.6.2. It is interesting to see that epicycloids and hypo-
cycloids can be described as roulettes in two ways: in the case
of the hypocycloid by rolling circles of radii b, (a—b) inside a
circle of radius a; and in the case of the epicycloid by rolling
a circle of radius b on a circle of radius a, or by rolling a circle
of radius (a-+b) so as to enclose the fixed circle of radius a.
This is shown in Fig. 41.

Fia. 41
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Suppose P is a point on the roulette, and let a be the radius
of the fixed circle, centre O (drawn with a double line). The
centre of the rolling circle is B and its radius b. Let I be the point
of contact. Produce PI to I, and let I’'O meet T P, the tangent
to the roulette, at 7"’ and the fixed circle at C. The circle on
I'T' as diameter passes through P, since I' PT" is a right angle
(PII' is normal to the roulette), and touches the fixed circle
at I'. Also since IC is perpendicular to II' and therefore
parallel to PT’, ITT'C is an isosceles trapezium and

CT' = IT = 2b.
Hence the radius of this third circle is (a-+b) for the epicycloid
and (a—b) for the hypocycloid. Thus, if B’ is the centre of the
circle 1I' PT",
OB'=b=BP and B'P=a+b= 0B,
so that OB’ PB is a parallelogram and B’P is parallel to O1.
Finally, in the upper figure,

arcl'P = (a+b)0 = af4-b = arc I'I+arc I[P
=arcI'I4arcIA = arcI’'4;
and in the lower figure
majorarc I'P = (a—b)§ = af—bl
= major arc I']—majorarc I P
= majorarc I']—arcIA = arcI'A.

Hence in each case the roulette is also generated by the rolling
of the circle centre B’ on the same fixed circle.

A model to show this is difficult to make successfully on
account of friction. In the case of the hypocycloid the fixed
circle can be a circular inlay in a board, in which rotate two
thin circular disks, hinged together at P. Their centres are
pivoted on short links OB, OB’ which attach them to an axle
at 0. An elevation of the arrangement is shown in Fig. 42.
The disks can be rimmed with felt to provide adequate grip.

In the case of the epicycloid the small circle can be attached
as described in 2.4 (Fig. 24), with an endless thread surrounding
it and the fixed wheel, but the large circle presents difficulty as,
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unless 1t is made solid, a link OB’ cannot be attached, but then
the movement cannot be seen. The large wheel must either be
spoked, or better still, made of ‘Perspex’ which will allow the
motion to be observed through it.

\ '/////////////// -
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If any epicycloid is rolled on a line, the centre of the fixed
circle describes an ellipse.

2.6.3. By a theorem in kinematics, any ‘trammel’ curve, or
curve described by a linkage, is a roulette described by the
carried point when the body-locus of the instantaneous centre
of the carrier link rolls on its space-locus. For example, the
path of any point of a rod whose ends slide on two fixed lines
(a ‘trammel of Archimedes’) is an ellipse; the motion is that
of a circle with the rod as diameter rolling on the inside of a
fixed circle of twice the size. This matter will be taken up again
in Chapter V.

An interesting chain of roulettes is the following. Roll a
straight line on a circle; any point of the line describes an
involute of the circle, discussed in 2.6.4 below. Roll theinvolute,
still attached to the circle, on a line; the centre of the circle
describes a parabola. Roll the parabola on a line; the focus
describes a catenary (the curve formed by a hanging chain;
see 5.1.5).

The roulettes described by the foci of the conics in general
when rolled upon a line are the sections of the minimal surfaces
known as unduloids; see, for example, D’Arcy Thompson, On
Growth and Form, p. 368, fig. 104. These surfaces are special
cases of the forms taken up by a soap film spanning the space
between prescribed boundaries. The surface formed by rotat-
ing the catenary itself is called the catenoid, and is the shape
of a film stretched between two circular wires in parallel planes,
with their centres on an axis normal to their planes.

The general problem of finding the surface of least area
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spanning a given contour is known as Plateau’s problem, after
the nineteenth-century physicist who studied it in detail. The
theoretical solution is very complicated, but in practice an
approximation to any particular solution can be obtained by
taking a wire frame in the shape of the contour and dipping
it in a solution of soap mixed with glycerine. Many very
beautiful surfaces can be obtained in this way, especially if
the wire frame is in the form of a regular polyhedron or one
of the knots described in 2.8 below, or even two linked circles.

2.6.4. Involutes. If a string is attached to a point of a
curve, lying along the tangent to the curve at that point, and
is ‘wrapped up’ on to the curve, the locus of any point of the
string is an ¢nwvolute of the given curve. It can be proved that
the point of contact of the string at any instant is the centre
of curvature of the involute at the corresponding point: the
original curve is the evolute of the involute; i.e. the locus of its
centres of curvature, or the envelope of its normals (see Fig. 43).

Fia. 43 Fi1a. 44

Involutes can be drawn very easily by mechanical means.
For example, we may draw the involute of a circle, one of the
most important members of the class. A circle is drawn on
a sheet of paper which is then placed on a wooden board or a
cork base, and pins are driven in at regular and reasonably close
intervals along its circumference. A thread is tied to one of
the pins, and a pencil-point is placed in a loop at the other end
of the thread (Fig. 44). As the thread is wound or unwound
from the circle of pins the pencil traces out part of the involute.
This curve is also the locus of a point of a straight edge which
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rolls on the circle—e.g. a point on a see-saw consisting of a
straight plank on a cylindrical log.

Alternatively the pencil-point can be replaced by a bob, and
the whole board mounted as described in 2.4.2 (Fig. 25). This
is a suitable treatment for any of the following involutes.

One involute of a cycloid is an equal cycloid. In Fig. 45 the
thread OP = arc OM, half the arch of the cycloid, or twice
the diameter of the rolling circle. This fact was made use of
by Huygens in designing the cycloidal pendulum, which has a
period strictly independent of the amplitude. There are other
more serious sources of error than this in the pendulum clock,
and nowadays steps are taken instead to maintain a constant
amplitude with a simpler suspension.

A 0 B

)
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In general, the evolute of any epi-or hypo-cycloid is a similar
curve rotated through an angle. In the case of the cardioid the
evolute is } the size; for the nephroid the factor is 4, for the
deltoid 3, and for the astroid 2.

The cardioid (Fig. 46) gives a particularly pleasing demonstra-
tion. The same method can of course be used for the conics,
but only part of the curve can be drawn; one-half of the ellipse,
less than a quarter of the hyperbola, and part of one-half of the
parabola (Fig. 47). In this case the evolute is a semi-cubical
parabola, similar to y? = 3.

2.6.5. The tractrix. This curve is an involute of a catenary
described by a point which is initially at the vertex of the
curve. Fig. 48 shows the geometrical relationships involved.
Oz is the directrix of the catenary y = ccosh(z/c); PQ is the
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tangent at P, and PQ = arc PC, so that @ is a point of the in-
volute. The well-known equations for the catenary, s = ctany,
y? = s?+c?, show that RQ is perpendicular to P and

RQ =c = CO.
Thus the locus of @ is the curve traced out by the end of a string
of fixed length ¢, initially lying along OC, when the other end,
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0, is moved along the line Ox. This is the origin of the name
‘tractrix’. If a small flat weight is attached to the string the
locus can be demonstrated by placing the weight on a flat board
and dragging the other end slowly along the fixed line.

The tractrix has the property that the surface of revolution
formed by rotating it about the asymptote Ox has constant
negative Gauss ourvature, and for this reason is known as the
pseudosphere. Triangles drawn on it have the sum of their
angles less than 180°. It is one of the models which have
properties analogous to the ‘hyperbolic’ plane of Lobachewski.
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2.6.6. Involute gears. An important practical application
of the involute of a circle is in the construction of gear-teeth.
These were made at one time in the form of epi- and hypo-
cycloids. Imagine two circles touching one another, concentric
with the gear-wheels, with radii in the same ratio as the gear-
ratio required. If a small circle rolls on the outside of one of
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N S, hypocycloid flanks !
epicycloid faces

these circles and on the inside of the other, two cycloids, one
epi- and one hypo-, will be described by a point of the small
circle, and these curves will remain in contact as the original
circles roll on one another. For at any instant both cycloids
pass through the same point P of the small circle which
touches the large circles at their point of contact 4; and each
curve has P4 as normal at this instant. The curves therefore
slide upon one another. Thus we can construct the projecting
‘faces’ of the gear teeth as epicycloids provided we construct the
indented ‘flanks’ on the other gear-wheel as the corresponding
hypocycloids (see Fig. 49).

This method of construction has the disadvantage that the
distance between the centres of the gears must be exactly equal
to that which was assumed in calculating the form of the teeth;
otherwise the velocity-ratio transmitted is not constant. Also
the teeth are difficult to cut accurately, and they tend to wear
unevenly.

To overcome these disadvantages the involute tooth was



64 MODELS IN PLANE GEOMETRY II

invented. Consider two circles concentric with the gear-wheels,
with radii in the same ratio as the gear-ratio as before, but not
now in contact. Draw their internal common tangents (see
Fig. 50). If a string is passed round the circles and crossed over
between them it will lie along these common tangents, and,
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provided it does not slip, a constant velocity-ratio will be
transmitted no matter what the distance between the centres
of the circles. The locus of any point of the part of the string
which is moving along one of the tangents, considered relative to
a plane carried by either rotating circle, is an involute of that
circle. These two involutes remain in contact at the same point
of the string (a variable point of the tangent) as the circles rotate,
Thus two gear-teeth, one on each circle, whose faces are these
two involutes, will remain in contact and transmit a constant
velocity ratio. The complete teeth can now be constructed as in
the diagram. (The teeth need not come to a point, nor need



2.6 MODELS IN PLANE GEOMETRY 65

opposite faces meet in cusps on the circumference, but the
diagram has been so drawn for simplicity.)

To make a model, cut flat disks of diameter equal to the
overall diameter of the toothed wheel required. Choose a simple
gear-ratio and plot out carefully the points and cusps of the
teeth on each disk. Plywood is a suitable material as the teeth
are easily cut with a fret-saw. The teeth can be marked out
with a template before cutting. To plot the involute for this
purpose it is sufficient to use the compass, taking successive
centres along the circumference and increasing the radius by
small steps.

Mount the plywood disks on solid wooden pulley wheels,
grooved to take a cord, the diameters of the grooves being
exactly those of the base circles of the involutes. Fit the gears
together so that they revolve easily without backlash and bolt
them to a base-board. A handle can be provided in one of the
disks. Care should be taken to cut sufficient teeth to ensure
a constant drive; the diagram is on the border line in this
respect. The model demonstrates clearly the constant velocity-
ratio, as the cord does not slip.

If desired, a model of cycloidal gears can be made similarly,
but the teeth are not easy to cut accurately; a good reason for
the supersession of this type of tooth. Rack-and-pinion teeth
can be constructed in a similar way; the faces and flanks in
the case of the rack-teeth will now be ordinary cycloids.

2.7. PAPER-FOLDING

This is another method which has possibilities which have
been more fully explored in America (see Geometrical Exercises
in Paper Folding by T. Sundara Row; also the article by R. C.
Yates in The 18th Yearbook of the National Council of Teachers
of Mathematics, p. 154).

2.7.1. Triangle. If a triangle is cut out of paper, it is easy
by suitable folding to obtain as creases

(a) the perpendicular bisectors of the sides (vertex on ver-

tex);

(b) the altitudes;
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(c) the angle-bisectors (side on side);

(d) the medians, after (a) has been done.

The concurrence of each of these four sets of creases can be
demonstrated in this way.

2.7.2. Another use of paper-folding has been mentioned in
2.1.2 above. See also 3.14, plaited polyhedra.

2.7.3. Conics. These can be described as envelopes of creases
if a circle is drawn on the paper. Tracing paper, or thin wax-
paper (jam-pot covers) should be used. To obtain the ellipse,
mark a point P inside the circle, and fold so that P falls on
the circumference of the circle. The envelope of the creases
so obtained will be an ellipse with one focus at P.

To obtain the hyperbola, P must be taken outside the circle.

If P lies on the circle, the result is not a parabola, but a
single point, the centre of the circle. To obtain the parabola
a line [ and a point P outside it must be marked. The paper
is then folded so as to bring P on [; the creases formed will
envelop a parabola with P as focus and [ as directrix.

2.7.4. Polygonal knots. If a strip of paper is knotted once
and carefully pressed flat the folds will form a regular pentagon
(Fig. 51(a)). All polygons with an odd number of sides may
be produced in this way; the knot which produces the heptagon
is shown in Fig. 51 (b). The even-sided polygons require two
strips of equal width; a reef-knot leads to the hexagon, Fig.
51 (c). To make the octagon, Fig. 51 (d), it is best to begin by
knotting and pressing one strip only, as in Fig. 51(e). The
complete octagon consists of two such knots interlinked.

2.8. K~NoTs

Mathematically speaking, a knot is a simple closed curve in
three-dimensional space. Both in a plane and also in space of
four dimensions all such curves can be deformed, without cross-
ing themselves, into simple circles; but in three dimensions there
is the possibility of the curve forming a knot which cannot be
so deformed. The study and classification of knots involves
advanced analysis and mathematical difficulties of a high order.
Even the simplest cases are by no means easily treated, and a
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few examples are given here. Models are easily made of string,
or better, of plastic tubing which can be joined by pushing the

(e)
Fic. 51. Polygonal knots

ends over match-sticks or old gramophone needles, without
unsightly knots.

The simplest knots are the two ‘clover’ knots, forming an
‘enantiomorphic’ pair (Fig. 52 (a)); i.e. each is the mirror-image
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of the other. It is no mean task to prove by abstract methods
that one cannot be deformed into the other, but a little mani-

(d)
Fic. 52

pulation will readily convince anyone that this deformation is
impossible.

The next simplest is the knot with four crossings shown in
Fig. 52 (b). This is ‘amphicheiral’, i.e. it can be deformed into
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its mirror-image, unlike the two clover-knots. (Amphicheiral
= fitting either hand; socks are amphicheiral, but shoes and
gloves are not.) There are two kinds of knot with five crossings
(alternately over and under); after that the number rises rapidly.
Some of the difficulties of the subject are illustrated by the
linked loops in Fig. 52 (c). Each loop by itself can be deformed
into an open circle—it is not knotted. The loops do not enclose
one another like links of a chain, yet they cannot be disentangled.
It may not be immediately obvious without a model that the
configuration is symmetrical in the two loops. The reader may or
may not be edified to learn that the locking of these two curves
is expressed analytically in its simplest form by the relation
2 Wyl tyxyx "y leyxy ey ley = 1,

where z, y are the operations of threading, in a fixed sense, each
of the two loops. The linkage has assumed considerable impor-
tance in some recondite theorems of topology.

The three rings shown in Fig. 52 (d) are such that no two are
linked together but all three are; cutting any one frees the other
two. They derive their name ‘Borromean’ from the fact of their
forming the arms of the Italian family of Borromeo; they are
also the trade-mark of an American liquor manufacturer, in
whose gaily-coloured advertisements they appear.

2.9. PLANE TESSELLATIONS

A convenient link between plane diagrams and solid con-
figurations is provided by the study of plane tessellations.
They form a suitable introduction to the polyhedra and their
nets considered in the next chapter. In fact a plane tessellation
is the special case of an infinite polyhedron.

2.9.1. The three regular tessellations. A regular tessel-
lation is a pattern of congruent regular polygons, all of one
kind, filling the whole plane.

It is evident, by considering angles at a point, that only
squares, equilateral triangles, and hexagons are admissible, and
these do in fact give three regular tessellations. The pattern
of squares is familiar enough; the chess-board and a sheet of
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squared paper are obvious examples. The hexagons can be
seen in the honeycomb, in patchwork cushions, and in wire-
netting. The triangles are rather less frequently met with: many
orchards are planted in this pattern (Fig. 53); graph-paper so
ruled is called isometric paper.

Fic. 63

2.9.2. The semi-regular tessellations. Although many
designs can be based on the three regular patterns, in themselves
they are not of great interest, except perhaps as an introduction
to the five regular polyhedra. The scope and interest of these
patterns is enormously increased if we consider the so-called
semi-regular tessellations now to be described. These corre-
spond in the plane to the semi-regular Archimedean solids in
space which we shall describe in the next chapter.

It is convenient to anticipate the notation there used for
these solids, which is equally applicable to the plane tessella-
tions. This is the modified Schlifli symbol. A facially-regular
solid or tessellation is a set of regular polygons of two or more
kinds so arranged that every vertex is congruent to every other
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vertex. The whole figure is then completely specified by giving
the polygons occurring at any vertex in the order in which they
are found. This information is abbreviated in a single symbol:
thus 3%.5 means that at every vertex there are four contiguous
equilateral triangles and one regular pentagon (this is an

4.83% 3.122

4.6.12 3.4.6.4
Fi1a. 57

Archimedean solid, the snub dodecahedron). 3.6 means four
triangles and one hexagon at each vertex—a plane tessella-
tion. 3.4.6.4 would be distinct from 3.6.4% as shown in
Fig. 54. Of these, 3.4.6.4 extends to a complete tessellation;
3.6.42 does not.

It can be shown that there are eight semi-regular plane
tessellations, and no more. Their symbols are 33.42% 32.4.3.4,
3.6.3.6,34.6,3.12%2 4.82% 4.6.12, 3.4.6.4. (The regular tes-
sellations in this notation are 3%, 63, 4%.) One of these, 3%.6,
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has two forms which are mirror-images of one another (enantio-
morphic); all the others are symmetrical. These forms cannot
be brought into congruence without turning the plane over
(Fig. 55).

When the tessellations are drawn they can be coloured or
used as the basis of various designs. The manufacturers of

Fig. 58

linoleum appear to be familiar only with 3.6.3.6 and 4.82;
there ought to be a future awaiting a designer who bases his
patterns on 3%.6 or 3%2.4.3.4. Interesting colour schemes can
be devised for all the tessellations, and suitable schemes help
very much in bringing out the essential geometry of the pat-
tern. For example, it will be found that 34.6 is really 3.3.32.6,
since one set of triangles has no side in common with a hexagon
and is differently related to the pattern from the other triangles.
If this set (which forms a triangular pattern 3¢ on its own) is
coloured differently, the meaning of the pattern is clarified.
Diagrams of all the tessellations are shown in Figs. 53-57.
2.9.3. Tiling patterns. Regular patterns of tiles can be
based on any of these tessellations or on any of the various types
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Fi1c. 69
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of plane lattice, for example on the parallelogram or rhombus.
Designers in this country do not seem to have been very enter-
prising in this respect. Star octagons are sometimes found, and
rhombi of various angles. A full account of patterns can be found
in MacMahon’s New Mathematical Pastimes. We have space
here for one of his; it consists of equal-sided (but not regular)
pentagons, but has the appearance of interlocking hexagons
(Fig. 58). Another design hails from Italy and appeared in the
Daily Telegraph in 1953; it shows what can be done with a
simple curved unit (Fig. 59). An artistically inclined mathema-
tician can find plenty of scope for originality in designing
repetitive patterns which can be mass-produced in tiles.

2.10. CurvES ASs LiMiTS OF POLYGONAL SEQUENCES

There are a number of curves of special interest which are
defined as the limits of certain sequences of polygons, each
figure being derived from the one before it in the sequence.
These curves were invented to illustrate definite properties; for
example that of finite area combined with infinite length. We
shall mention three and show in diagrams the early terms of
the sequences, in the hope that the reader will appreciate the
beauty of their patterns and will feel that for that reason, if for
no other, they are worth drawing.

2.10.1. The Von Koch ‘snowflake’ curve. Take an equi-
lateral triangle C,. Trisect each side, and replace the centre third
of each by two sides of an equilateral triangle described on it
outwards, thus obtaining C| (Fig. 60). Treat C] in the same
way, obtaining C,, and so on. Von Koch’s curve is C = limC,,.

n— o

The reader may verify that if [, 4, are the length and area
of C,,
4\ 17, ., A,
ln=3ax(§) ; AnzAn—1+§71§',;’
where a, A are the side and area of the original triangle C,.

Hence l, - o0, A,, > 8A. Thus C has infinite length, finite area,
and at no point possesses a tangent.
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2.10.2. The ‘anti-snowflake’ curve is obtained as the limit
of a similar sequence, the only difference being that the equi-
lateral triangles are turned inwards instead of outwards. The
first four terms are shown in Fig. 61. In this case [, is the same
as before, but

and thus A, = £A. The curve has double-points at a ‘Cantor-
set’ of points on the radii 04, OB, OC of the original triangle,
formed by repeated trisection and rejection of the centre third.

E N4

. N i 7
"""""""" R s et s LERE SN EREREEEEEEES

i /N
_______ LN O

N 5
C, c,
C, c,

Fia. 62

2.10.3. The Sierpinski curve. This curve has the remarkable
property that it contains every interior point of a square, yet it
is unicursal and its ‘area’ is less than half that of the square.
We begin with a square divided into sixteen smaller squares.
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The vertices of C, are all mid-points of the edges of these
squares, as shown in the diagram, Fig. 62. Divide the original
square into four; in each corner construct a C, on half the scale,
and unite them as shown in the centre, obtaining C,. The
diagram indicates sufficiently clearly how the process is repeated
to obtain C,, Cj,.... Sierpinski’s curve C = limC,, as before.

n—»oo

If a is the side of the original square, the reader may verify that

3 1

[, —> co.
11a2 7a2 1
A == - ; A = A _ —--—;
0 32 n n 1+ 32 41l
Ao = $a2

It is also possible to carry out the sequence if C, consists’of
four squares on alternate sides of a regular octagon; in this
case each polygon is a chain of sides of the Archimedean plane
tessellation 4. 82 (see 2.9.2):

l, = 8a(vV2—1); l, = 2l,_;;

a’® v2—1 1
A() == 5(5—3\/2); An ol An_1+a2 2 4__n;

A, — %2(7_«/2).

2.11. GOLDEN SECTION

This is of frequent occurrence in the various pentagonal poly-
hedra, and also has an interest of its own, so that there need be
no excuse for introducing it here.

A line is said to be divided in golden section if the ratio of
the whole line to the larger part is equal to the ratio of the
larger to the smaller part. If this ratio is =, we have 72 = 741,
so that

_
_ Y5+ 1o

T
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The connexion between this ratio and the pentagon can be
seen as follows. Consider a triangle 4 BC with angles 36°, 72°,
and 72°. Bisect one base-angle B, so forming two further
triangles BCD, A BD, both isosceles.

A D C
Fic. 63 Fia. 64

Then AD = BD = BC, and from the similar triangles BDC,
4BC AD BC _AC _AC.
DC  DC  BC AD’
so that AC is divided at D in golden section. Thus if D can
be found, ADBC can be constructed by making
DB = CB = DA,

and hence the angle of 72° and the regular pentagon can be
constructed.
The geometrical construction for golden section is shown in

Fig. 64, in which EX = EC = }AC.

It is easy to show that
AD

6=

If a rectangle is. drawn with its sides in the ratio 7:1, it has
the property that the removal of a square from one end of the
rectangle leaves a similar rectangle, turned through a right
angle. If this process is continued a nest of squares is formed
converging on a point O, which is the pole of an equiangular
spiral which passes through 4, F, G, H,..., the successive points
of division (see Fig. 65). The angle of the spiral can be shown
to be the root of the equation exp(3mcotd) = 7, i.e. 73° very

T.



70 MODELS IN PLANE GEOMETRY II

nearly. This figure is well worth constructing. If an attempt
is made to draw it by measurement of the ratios, it will be
found that errors are cumulative and the rectangles rapidly
depart from the correct shape. This can be avoided by noting
that the successive points of subdivision lie on the diagonals
BD, CE, and the pole O of the spiral is where these two lines

F

B C

G

A \/D
E H

Fiac. 65

intersect. The points of subdivision form an excellent example
of a geometrical sequence with a limit-point. The circular
quadrants form a close approximation to the true spiral, which
almost touches the sides of the rectangles, since

OFC = tan-173 = 76° 43",

The lines 04, OB, OF, OC, OG, 0D, etc., are at angles of 45°,
The Greeks considered the rectangle of this shape to have the
most beautiful proportions, and some of their temples are built
on this plan. The spiral of this angle ¢ has been held to occur
as a basis of many great paintings. It occurs also naturally in
snail-shells and flower-heads, and in other places. See D’Arcy
Thompson, On Growth and Form, chaps. xi and xiv.

To judge from the figures and statements in some of the
literature, it has often been supposed that this spiral does in
fact touch the sides at A, F, G, H, etc.} But this is not so,
and such a spiral is impossible. The condition for two perpen-
dicular tangents to be equal is

exp(imcot ) = tan(r—do)
1 But compare the footnote to fig. 360, p. 764, in D’Arcy Thompson, op. cit.
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for which the only solution is ¢ = 4=, i.e. a circle. There is a
spiral which is its own evolute, for which ¢ is the root of

exp(3mcot ) = tand,

or approximately 74° 39, only slightly different from the one
under consideration. One might hazard the guess that this is
the real property responsible for any supposed aesthetic excel-
lence of a spiral of about this angle: that the tangent, along
which the eye tends to travel, strikes the next coil of the spiral
normally and gives a feeling of balance to the whole.

2.12. SOME MI1SCELLANEOUS CURVES AND FIGURES

We conclude this chapter with a list of curves and geometrical
configurations which are suitable for inclusion in a permanent
collection or for exhibition on public occasions.

2.12.1. Algebraic curves. Many of these can be plotted
point by point by solving quadratic equations only, on substi-
tuting y = px, or y% = z.

Of course, more advanced methods will usually give a rough
picture of the curve more quickly.

For plotting
Famous or interesting cubics substitute
(1) x3+y3 = 3axy folium of Descartes y = px
(2) y = a®/(x?+a?) witch of Agnesi values for «
(3) zy = x3—ad trident values for x
(4) z(x*4-y?%) = ay? cissoid values for
(5) y2*(a—=z) = x*}(x+a) strophoid values for x
(6) 3= a%—ad values for x
Interesting quartics
(7) «%y? = 224y ‘policeman on
point-duty’  values for
(8) =zt = ax2—y? lemniscate values for z
(9) ay(x?—y?) = 22442 Maltese cross  y = px
(10) yit—at = xy swastika Yy = px
(11) y%(y®?—96) = x?(x2—100) electric motor Y2 ==z
(12) 1222 = y3(4—v) peg-top values for y
(13) =2*+y* = a’xy y = px
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(14) (22+2ay—a?)? = y?*(a®—x?) cocked hat values for
(15) (x2—1)% = y3(3+2y) knot values for y
(16) ai+y? = 2axy? bifoliate y:=z
(17) at+a?y2+y* = x(x2+y?)  bean y: ==z
(18) axt+a?y?+4yt = x(x*—y?) trefoil y: =2z

(19) (x24y%*—3x)% = 42%(2—x) links values for z

(20) (y*—a?)(x—1)(22—3)

= 4(x%4y%?—2x)2 ampersand y:=z
(21) (r®—a®)(x—a)’+(y>—a’)?
bicuspidal values for x

(22) (22—1)

= y*(y—1)(y—2)(y+5) stirrup values for y
(23) at = x%y—y3 bow Yy = px

Higher degree curves

(24) 4% = x*—at dumb-bel} values for
(25) 9% = x%y-+ad keratoid cusp  values for
(26) y? = x%4ad values for
(27) x% = 28448 butterfly values for z
(28) a%+y® = 222—5bxy+2y° Yy = px

Famalies of curves

y? = z(x2—3)+c for values —2, 0, 2, 4, 6 of c.

Confocal conics
2 2

x Yy
=1
IR R YA
Repeating patterns obtained from algebraic curves by replac-

ing x and y by trigonometric functions of x and y. For example,
from the folium x34-y3 = 3axy, trace for different values of a

sindx+sindy = 3asinxsiny,
sindx 4 tan3y = 3asinx tany,
tan3x+tan3y = 3atanztany.
(The patterns are given in Frost’s Curve Tracing, plate xv,
fig. 4, and plate xvi, figs. 1 and 2.)
2.12.2. Polar curves. These are conveniently drawn on
polar graph paper. They are arranged in inverse pairs (1-14);
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each pair can be conveniently drawn on one sheet; ifa = 10 cm,
paper on which the largest circle is 30 cm in diameter is suitable.

(1)

—
=3 O Ot = W D

W N = O O

et ped p — e e
> Qo
N N N e’ e e e e’ S N’ S S’ N S

P T e P N N B
[a—
%)

~
[a—
(@)
-

r = acosf

r = asecl

r?2 = a2cos 20

r?2 = a?sec 20

r = da(1+cosb)
r = 3a/(1+4cos6)
a(l+4cosf)
a/(1+3 cos 6)
a(3-+cosf)
a/(}+cos )
a§°/100

= 100a/6°

r2 = a%0°/100

r2 = 100a2/6°

r = aeecota

e S T S S S |
|

r = acosnf

circle
straight line
lemniscate of Bernoulli
rectangular hyperbola
cardioid
parabola
limagon without loop
ellipse, eccentricity %
limagon with loop
hyperbola, eccentricity 2
Archimedean spiral
reciprocal spiral
parabolic spiral
lituus
equiangular spiral (say
r = antilog 6°/1000)
rose-curves (rhodoneae); n petals if
n is odd, 2n petals if » is even

The limagon family r = a+-b cos § with variable b
The family 7* = a™ cos n8 for

n= —2
—1

—3

+13

1

3, 3, etc.
2

rectangular hyperbola
straight line

parabola

cardioid

circle

intersecting loops
lemniscate of Bernoulli

2.12.3. Bipolar loci. P is a variable point, R and S are
fixed. PR =17r, PS = s, RS = 2c.
r = A8 circle of Apollonius
r==: right bisector of RS
Ar4+pus = k  Cartesian ovals

(1)
(2)

r+s = 2a ellipse

r—s = 2a hyperbola
r—s = cV2  rectangular hyperbola
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(3) 7rs = k? Cassinian ovals
rs = c? lemniscate of Bernoulli

(4) ;—{—;—L- =k equipotential lines for charges A, 1 at R, S

(5) cos PﬁS + cos P@R = k lines of force for magnet with
poles at R, S.

To draw the Cartesian ovals, first draw the lines Ax4-uy = k.
The ovals are then obtained as the loci of intersections of circles
with centres R and S, whose radii are the (x,y)-coordinates of
points on these lines.

To draw the Cassinian ovals, draw a circle containing a chord
of length 2k. Possible radii r, s are segments of chords through
the mid-point of this chord.

2.12.4. Graphs of functions:

(1) The standard error curve y = e~*<*,

(2) The sine curve, the curve of damped S.H.M.

y = e *%sin px,
and curves showing ‘beats’,

y = sinmx + sinnx, m = n.

3) y==2"
y = (1+=z)V=
y = (1+1/z)*

y* = 2v  (This involves difficult analysis. Do not for-
get the point (—2, —4). Are there others
in this quadrant for y #z?)

(4) The series of approximations to ¥ = sinx obtained from
the Maclaurin expansion

y==2, x—3}x3, zc—}xd3445% ete.

(5) The series of approximations to ¥y = 1z obtained from
the Fourier expansion (—7 < z < =)

y = sinz, sinx — 3sin 2z, sinx — }sin 2z + }sin 3z, ete.
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(6) The ‘pathological’ functions

.1 .1 5 1
Y = sin-, Y = xrsin-—, Yy = zsin—,
X xX x

1

on a large scale for z, say for 2 > |x| > o

2.12.5. Configurations of interest:

(1) Orthogonal families of coaxal circles.

(2) The orthocentric quadrangle, with its nine-point circle,
and the sixteen incircles and ecircles of the four triangles,
touching it.

(3) The complete quadrilateral, with the four circumcircles
of the triangles meeting in the Wallace point, the line of
orthocentres, the circle of circumcentres, and the two
families of orthogonal coaxal circles.

(4) The complete quadrangle, the four nine-point circles, the
four pedal circles, and the circumcircle of the diagonal
triangle, with their common point.

(5) Some of the Pascal lines of a six-point on a conic, and the
Brianchon points of six tangents to a conic.
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POLYHEDRA

3.1. INTRODUCTION

THE most suitable, and in many ways the most attractive,
subject for an experiment in the construction of mathematical
models is a set of polyhedra. The various types of polyhedra
have exercised a great fascination over the minds of mathe-
maticians of all ages, among them some of the greatest names
in mathematics. It has even been said that Euclid’s great work,
The Elements, was not intended so much to be a textbook
of geometry in general as to be an introduction to the five
regular solids known to the ancient world. It begins with the
construction of the equilateral triangle and ends with the con-
struction of the icosahedron.

These five solids, the so-called Platonic solids, form the first
and simplest group of polyhedra. They have regular faces, all
congruent, and their vertices are regular polyhedral angles; that
is to say, all the face-angles at every vertex and all the dihedral
angles are equal. This can be expressed in another way by
saying that the ‘vertex-figure’ formed by the lines, lying in
the faces which meet at a particular vertex, which join the
mid-points of the edges meeting at that vertex, is a regular
polygon (Fig. 66). These requirements are not all necessary for
a definition of a regular solid, but they are all true of it. As
our aim is descriptive rather than deductive, we shall not go
further into this question here.

A slight extension of the idea of a regular polygon to the
‘star-polygon’, which has equal sides and angles, but is not
convex, leads to the next group of four polyhedra, which are
associated with the names of Kepler and Poinsot; their faces
or vertex figures are star-polygons, actually in all cases penta-
grams. The pentagram is shown in Fig. 67; it is formed either
by joining alternate vertices of a regular pentagon or by pro-
ducing the edges until they meet the edges which are not their



3.1 POLYHEDRA 77

immediate neighbours. In a similar way the four Kepler-Poinsot
polyhedra can be formed from the regular dodecahedron and
icosahedron, either by drawing new planes through chains of
vertices, for example, PQRST in Fig. 66, or by producing non-
adjacent faces until they intersect. The first process is called
faceting, the second, which is rather easier to visualize, stellating.

Fic. 67

These four solids are also regular, and bring the total of regular
solids up to nine.

The next class of solids comprises those which have some of
the properties of the regular solids, but not all. If we forgo the
requirement that the vertex figures shall be regular, and that
the faces shall be all of one kind, but retain the conditions that
the faces shall all be regular and that the vertex figures shall
all be congruent, we obtain the set of facially-regular, or Archi-
medean solids, which contains two infinite groups, the prisms
and antiprisms, and thirteen others. Correspondingly, if we
interchange the conditions forgone and retained, we obtain the
vertically-reqular solids, or Archimedean duals, including the
infinite families of dipyramids and trapezohedra, and thirteen
others, among which are the rhombic dodecahedron and the
rhombic triacontahedron.
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There are also stellated Archimedean solids analogous to the
Kepler-Poinsot solids in the regular case of which we shall give
a few examples only.

Another interesting group of figures is the set of regular com-
pounds, in which regular polyhedra having the same centre are
combined to form solids of great symmetry and beauty.

From the point of view of construction the easiest polyhedra
to make are those whose faces are all equilateral triangles. For
these the name ‘deltahedra’ is proposed.

There are eight convex deltahedra, and an infinite number
of non-convex ones, of which a few simpler examples are
described.

The chapter concludes with examples of polyhedra which can
be stacked together to fill space—solid tessellations—and a few
miscellaneous models of interest.

3.2. DuavriTY

A brief explanation must be given of this important principle
as applied to polyhedra. In the cases in which we shall use it,
it is equivalent to reciprocation with respect to a sphere. The
polar of a point on a sphere with respect to that sphere is the
tangent plane at the point; the point is the pole of the tangent
plane. If the point is not on the sphere, but outside it, the
polar plane passes through the points of contact of the tangents
from the point. Conversely, the pole of a plane cutting a sphere
is the point where the tangent planes at the points of section
are concurrent. If a point lies inside a sphere, or the plane does
not cut the sphere, their polar and pole can be obtained in real
geometry from the reciprocal property that if P lies in the polar
plane of @, @ lies in the polar plane of P. Details will be familiar
from the analogous two-dimensional case.

In three dimensions the line occupies an intermediate posi-
tion. If two planes meet in a line [, their poles are joined by the
polar line of I, and conversely. Thus a duality is established
between points and planes, lines and lines. Every polyhedron
can be reciprocated with respect to a sphere, each plane being
replaced by its pole and each vertex by its polar plane, thereby



3.2 POLYHEDRA 79

constructing another, dual or reciprocal, polyhedron with the
numbers of faces and vertices interchanged. It can be shown
that, for a sphere, polar lines are perpendicular, and, for a
suitable choice of radius, they can be made to intersect. This
is the most interesting position in which reciprocal polyhedra
can be placed, with each edge of one intersecting at right angles
(and usually also at the mid-point) the corresponding edge of
the other. Some of the regular compounds are formed in this
way. We shall call this sphere, which touches all the edges of a
polyhedron, the intersphere, and its radius the inter-radius.

3.3 MATERIALS AND CONSTRUCTION

3.3.1. Paper and cardboard. For complete beginuers
paper has the obvious advantage of cheapness, but it quickly
gets dirty in use and is not easy to clean. In addition, a paper
model is easily damaged and cannot be properly varnished or
enamelled. Except for the very simplest polyhedra the folding
of the nets without scoring is a difficult matter. Obviously,
for any model which is to be at all permanent, cardboard will
be used.

The card should be white with a good surface, and fairly thin,
about the thickness of a plain postcard. Thick cardboard makes
ugly corners, and allowance ought to be made for its thickness
in drawing the net. It is useful, however, to cut flat sheets of
thick card for internal strengthening in some of the stellated
and interpenetrating polyhedra. Cartridge paper is not satis-
factory unless it is stout enough to score half through without
cutting, and for small models the manilla of thin filing folders
or exercise-book covers is better. This does not need enamelling,
and can be obtained in different colours. Interpenetrating solids
can be made by adding manilla vertices of one colour to a poly-
hedron made of the other, for example, a model of the inter-
linked icosahedron and dodecahedron has been made in this
way.

A knife or razor blade will be needed for cutting and scoring:
preferably a Valet autostrop blade with a rigid back—wafer
blades are dangerous and useless unless fixed in a special holder.
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It should be used with a steel rule—set-squares and rulers of
wood or celluloid can quickly be cut to pieces!

3.3.2. Glass and ‘Perspex’. These have the great advan-
tage that they are transparent, and therefore an inscribed model
can be clearly seen. Glass is awkward to cut accurately in poly-
gonal shapes and almost impossible to cement except at right
angles. ‘Perspex’ is easy to work and takes a high polish, but it
is expensive and scratches easily. A glass cube can be made out
of lantern-slide cover glasses ground and cemented at the edges,
open at the base, and standing on a wooden plinth. In this all
the Archimedean solids derived from the cube and octahedron
can be inscribed. For the solids derived from the dodecahedron
and icosahedron an icosahedron can be constructed out of ‘Per-
spex’, made in two separate halves hinged together. The same
could be done with glass but it would be difficult to get the
edges of the equilateral triangles to adhere without using ‘Sello-
tape’ (cellulose tape), or gumstrip.

As ‘Perspex’ is a comparatively new material, some hints on
handling it may not be out of place. Thin }" or j” sheet is the
best for models. The plasticized variety can be moulded after
heating in boiling water, but for polyhedra this is not necessary.
The figures to be cut can be scratched on it with a hard point.
It can be cut with a tenon-saw—a fine dovetail-saw is best—
which must be kept well oiled as the dust clogs the teeth. A
coping-saw can also be used, or best of all, a small hack-saw.
It can be planed in narrow thicknesses only, but it blunts the
tool, which must be kept very sharp and set very fine. It is also
possible to file it or grind it with carborundum. The edges can
easily be filed or planed down to any dihedral angle, which is a
great advantage in making polyhedra. Cementing is easy by
using the material itself dissolved in ethylene dichloride, carbon
tetrachloride, acetone, or xylene. The manufacturers also supply
a cement of this nature, ‘Diakon No. 2’.

Great care must be taken to avoid scratching the material
while working it. It should be clamped and protected between
wood blocks as far as possible. Scratches which do occur can be
rubbed out with jeweller’s rouge, or household scouring powder,
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and the surface polished up with a metal polish or plate
powder.

A heated compass point makes holes for thread or rivets, and
the burr can be cut off with a knife. It is preferable, however,
to use a drill.

3.3.3. Construction of cardboard models. The exterior
perimeter of a net of a polyhedron which is all in one piece
becomes a ‘tree’ of edges on the solid. This tree may be
branched, but every edge is double and occurs twice on the
perimeter of the net. It is evident that if these edges are num-
bered consecutively round the net every even edge will be joined
to an odd edge in the final solid. This means that tabs need
only be attached to the even edges. In the nets which follow, tabs
are not shown unless there is special need to do so. In all other
cases the rule is: attach tabs to alternate edges round the net.

There is an exception in the case of the last face, which is
best left free of tabs. The missing tabs must be added to the
other edges, and are best made large, so that a platform can
be built up to which the last face can be stuck.

When the dimensions of the model have been decided on,
the net can be constructed on the cardboard. In the case of a
complicated net this is facilitated by pricking through vertices
from a template drawn on tracing paper, but it must be done
very accurately. Tabs are then added to alternate outside
edges, care being taken to ensure that the angle at the shoulder
of the tab is small enough to admit of the tab’s being cemented
to its appropriate face. The net can now be cut out with a razor-
blade and the edges scored half-through for bending. (Where
edges have to be scored on the back—in the stellated poly-
hedra—this is indicated in the diagrams.) The face of the net
becomes the outside of the polyhedron.

For joining, a quick-drying cement, such as balsa-wood
cement as used for model aircraft, is essential. After the cement
has been applied to a tab, the edges to be joined are brought
together, and the tab can be held down with a small wire paper-
fastener while the cement dries. This is particularly useful in
small models when the fingers cannot easily get inside, and near
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the finish of any model when there are several edges to be joined
at once. A thin wire probe is sometimes useful in getting the
last face to adhere.

If it is desired to make a set of polyhedra with the same inter-
radius, or to be inscribed in a ‘Perspex’ cube or icosahedron,
the dimensions can be calculated from the data given for each
solid. It is important to remember that although the net is the
outside of the polyhedron, its measurements give the inside
measurements of the finished solid, because of the way the
scored creases open at the fold. Allowance must therefore be
made for the thickness of the card in calculating the necessary
length of edge.

3.4. COLOURING POLYHEDRA

The attraction of a set of solid models is greatly increased if
they are suitably coloured. A good enamel is best; coloured

S
a0

Fic. 68

dope is also suitable for the purpose. The Archimedean solids
can be coloured so that all faces lying in planes of a circum-
scribed cube are of one colour, those on the planes of a cir-
cumscribed octahedron another, and similarly with the dodeca-
hedron and icosahedron. The other planes in the rhombic
polyhedra and the snubs require a third colour.

The dodecahedron itself exhibits the simplest ‘regular’ map
requiring four colours, which can be allocated to its faces in
two distinct ways.t The icosahedron requires only three colours;
if five are used, the five faces at every vertex can be coloured

t See Rouse Ball, Mathematical Recreations and Essays, 11th edition,

pp- 227 fi. A ‘regular’ map is one in which there are never more than three
edges meeting at a vertex.
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differently but opposite faces cannot then be coloured alike.
This scheme is valuable for the great icosahedron.

The stellated polyhedra can be coloured to correspond with
their regular relatives, and this helps greatly to make their
planes and structure readily appreciable. The interpenetrating
compounds demand of course that the individual solids com-
posing them should have all faces of each coloured alike, while
each is differently coloured from its companions. The schemes
for the dodecahedron and icosahedron are shown in Fig. 68
on ‘distorted representations’.

3.5. THE FivE REGULAR PrAaTONIC POLYHEDRA
In the following pages, which form a sort of ‘atlas’ of poly-
hedra, there is given for each solid

(1) its name and a symbol (to be explained);

(2) a perspective drawing of the solid;

(3) its ‘net’, i.e. the figure produced if the solid were made
of cardboard, cut along a chain of edges, and opened out
flat;

(4) the ratios of its edge to the radius of the intersphere, and
to the edges of regular polyhedra in which it can be
inscribed;

(5) the dihedral angles between its faces;

(6) one or more plans, or orthogonal projections of the solid;

and
(7) a table of the number of faces, vertices, and edges.
Fuller details are given in Table II. The symbol used to indicate
the polyhedra is a modification of that invented by Schlafli.
He gave the number of sides in the (regular) face and in the
(regular) vertex figure; thus the cube is {4, 3}. This does not
extend to the Archimedean solids, so that we prefer here to
write (as an index) the number of faces of each kind at each
vertex (cf. 2.9.2). The cube is therefore written 43, and a snub
cube 3%.4.

Since each side of a regular polygon of p sides subtends an
angle of 27/p at the centre, whereas the side of a pentagram sub-
tends 47/5, it is convenient to call the pentagram {5/2}, and
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generally to denote by {p} a polygon whose sides subtend 27/p
at its centre (p > 2). This is a regular convex polygon of p
sides if p is integral, and a stellated polygon of » sides, enclosing
the centre d times, if p is a fraction n/d in its lowest terms.

For the Archimedean duals, the vertex figures are now
regular, and of different kinds, while the faces are not. This
is denoted by prefixing V to the symbol, which now refers to
the number and arrangement of vertex figures round each face.
Thus the rhombic-dodecahedron, the dual of the cuboctahedron
3.4.3.4 or (3.4)% is V(3.4)%

The tetrahedron, cube, and octahedron occur naturally in the
form of certain crystals; the skeletons of the radiolarians Ctrco-
porus cctahedrus, Circogonia tcosahedra, Circorrhegma dodeca-
hedra have the form implied by their name (D’Arcy Thompson,
On Growth and Form, p. 726, fig. 340).

3.5.1. Tetrahedron. 33
NET:

Fic. 69 Fi1a. 70
Edge

Inter-radius

Dihedral angle = 70° 32'.

= 242 = 2:828.

PrLANS:

Fi1a. 71

4 4 6 Self-dual.
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3.5.2. Cube. 43
NET:

Fic. 72 Fic. 73

Edge

fred ’\/ 2 p— ]. ‘4 1 4.
Inter-radius

Dihedral angle = 90°,

Pran:
Fia. 74
F A" E
6 8 12 Dual of octahedron.
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3.5.3. Octahedron. 34

Fic. 75

NEr: /\
YAVAVAV
\VY4

Fic. 76

Edge |
Inter-radius =~

Dihedral angle = 109° 28’.

Praw:

8 6 12 Dual of cube.
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3.5.4. Dodecahedron. 53

NET:

Fic. 79

Edge
Inter-radius
Dihedral angle = 116° 34’ (= mr—tan-12).

= 3—+5 = 0-7639.

Fi1c. 80

12 20 30 Dual of icosahedron.
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3.5.5. Icosahedron. 3%

Fic. 81

EVAVAVAVAVAN
Fic. 82 \/\/\/\/\/

Edge
Inter-radius

= /5—1 = 1-236.

Dihedral angle = 138° 11’ (7—sin-132).

Pran:

Fic. 83

111

12 30 Dual of dodecahedron.
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3.6. THE KEPLER-PoINSOT POLYHEDRA

These four beautiful solids were unknown to the ancient
world and were not discovered until modern times. The two
with star faces—the two stellated dodecahedra—were found by
Kepler (1571-1630); the others with regular faces and star
vertices—the great icosahedron and dodecahedron—by Poinsot
(1777-1859). They are technically speaking regular polyhedra,
and with the five Platonic solids bring the total number of
regular polyhedra up to nine, which are all shown in Plate 1a.
It can be proved that this exhausts the possibilities, apart from
compounds. On account of their re-entrant angles, their con-
struction is more difficult than that of ordinary convex poly-
hedra, and care must be taken to ensure adequate rigidity.
The solids are not deformable in theory, but in practice slight
gaps at the corners and other inaccuracies lead to considerable
distortion unless due precautions are taken. Means of doing
this are suggested for the individual solids.

They are peculiarly pleasing if suitably coloured and the
planes of the faces can be clearly seen. One has the satisfaction
of having constructed a polyhedron whose very existence was
denied by at least one mathematician. (The small stellated and
great dodecahedra do not satisfy Euler’s theorem

F4V = E42

in its usual form. For this reason it was supposed by Schlafli
that they could not exist.)
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90

(3)°

3.6.1. Small stellated dodecahedron.

Fi1c. 84

Dual of great dodecahedron.

Fic. 85
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Construction of net. Each pentahedral pyramid can be
formed from half of a plane decagon as shown (Fig. 86 a and b);
twelve of these fitted together form the complete net. One way
of fitting the vertices together is given below.

Construction of solid. It is advisable not to use the com-
plete net, but to build the solid up from pentahedral pyramids

I'1¢. 86 ¢

pentahedral
pyramid

flap
pcntahm

pyramid
dodccaliedron

Fiu. 87 Fic. 86 b

attached to an inscribed dodecahedron, and cement edge to
edge. The edges that coincide with a dodecahedral edge must
be provided each with a flap instead of alternately; these flaps
can then be fastened to the dodecahedral faces (Fig. 87).

Edge
e —_— 4. .
Edge of inscribed dodecahedron 2445 236
08 _ 541 = 3:236.

Inter-radius
Dihedral angle = 116° 34’.
(Re-entrant angle = 116° 34'.)

Comparing Fig. 67 with Fig. 63, it is evident that the sides
of a pentagram are divided by the ‘false vertices’ in the ratio
T:1:7,
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3.6.2. The great dodecahedron. 5%

Edge 345 9.618
Edge of inscribed dodecahedron ~—~ 2 '
Edge
= V5—1 = 1-236.
Inter-radius 236
Dihedral angle = 63° 26'.
(Re-entrant angle = 116° 34'.)
PLaN:
Fic. 89
F \% E Dual of small stellated

12 12 30 dodecahedron.
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Construction of net. Since the face angles at each true
star-pointed vertex add up to 360° (36°x 10), the net is parti-
cularly simple; one form of it is given below. All solid lines

are to be cut or scored on one side; the dotted lines are scored
on the other side.

Construction of solid. This net usually makes a rigid
model without any additional strengthening, but the vertices
where ten cuts meet tend to break. They can be covered with
small paper circles, since the sum of the face angles at each
vertex is 360°.

Alternatively, three of the twelve pentagons can be made
solid, for example, those attached to the edges of one of the
triangles. The indented trihedron can then be made to fit in
this triangle; three five-pointed stars and a unit for four more
indented trihedra complete the solid.
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3.6.3. Great stellated dodecahedron. (3)3

Dual of great icosahedron.

SRS

Fia. 92
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Construction of net. The solid consists of twenty triangular
pyramids circumscribing an icosahedron, one on each face.
The net of a single pyramid is easily constructed as follows:

Fic. 93

Construction of solid. The easiest way to build the solid
is to make the pyramids hinged in pairs and to cement them
to an icosahedron by means of base flaps as shown.

Fio. 94
Edge of insm}?i}l()ieg:l3 icosahedron 4-236.
Intiig;iius = 3-++5 = 5-236.
. dlge _ 3—245 — 0-382. Inter—iadius _

Dihedral angle = 63° 26,
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3.6.4. The great icosahedron. 3:

Fic. 95
Edge T3V 6-854
Edge of inscribed icosahedron ~ 2 '
Edge 5.1 — 3.236.

Inter-radius
Dihedral angle = 41°49’.  (Re-entrant angles = 109° 28'.)
l m N5—1

prnnd 5— s i . —_— = — = ¢ 18.
Inter-radius V5—1 1-236 l 2 0-6
PrLaN:
F \'% E Dual of great stellated

20 12 30 dodecahedron (§)3.
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Construction of net. The figure shows the eighteen lines
in which a face of the icosahedron is cut by eighteen other faces
(excluding the face itself and the parallel plane). The sides of

N

N N
¥

m

U

Y
ey

the triangle are divided in golden section 7:1:7. The inner
solid triangle is the face of the inscribed icosahedron. The
shaded portions are elements of the net which come together
(from three different planes) at a concave false vertex; from
them the net can be constructed. The three fit together as
follows:

Fi1a. 98

« = 22°14’; B4y = 120°; B = 37°46’ = 60°—a; y = 82° 14’ = 60°+a;
8 = 75° 32",

Five of these pieces fit together at each vertex of the solid;
the whole solid is made of sixty of them.
The arrangement at a vertex is shown on p. 98 (Fig. 99).
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F1c. 99. NET oF A SINGLE VERTEX. [Marked lines must be scored on the back.
Note that the marked radii are longer than their neighbours.]

Construction of great icosahedron. This polyhedron is
theoretically rigid, but in practice it will usually be found
slightly deformable. Furthermore when so many edges, scored
alternately front and back, meet at each vertex, there is a
tendency for the card to break away, notably at the re-entrant
(false) vertices where there are many joins. It is advisable
therefore to construct the model in a different way.

Fi1c. 100

We begin by making the solid ‘A’ (Fig. 100) which is a dodeca-
hedron with pentagonal dimples, all of whose faces are equilateral
triangles. This is in fact a deltahedron (see 3.11), and its net is
given below (Fig. 101). Now make twelve vertices ‘B’ using the
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Fic. 102

net given in Fig. 99. It is best to strengthen each internally
with two hinged equilateral triangles, as indicated in Fig. 102,
inserted into the star-polyhedral angles from inside. The twelve
‘B’s are now cemented into the twelve dimples in ‘A’, and the
solid is complete. This method was communicated to us by
Mr. N. J. Bridge and is used by permission.
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3.7. THE ARCHIMEDEAN POLYHEDRA

The Archimedean, or semi-regular polyhedra, are what is
called ‘facially’ regular. This means that every face is a regular
polygon, though the faces are not all of the same kind. Every
vertex, however, is to be congruent to every other vertex, i.e. the
faces must be arranged in the same order around each vertex.

The regular prisms, which consist of two congruent regular
polygons similarly placed in parallel planes, with corresponding
vertices joined by edges, satisfy the definition of facially regular
solids if the side faces are squares. The definition is also satis-
fied by the series of regular prismoids or antiprisms. In these
there are also two parallel plane faces which are congruent
regular polygons, but one polygon is twisted so that each of
its vertices is midway between two vertices of the other, to
each of which it is joined. The side faces are thus triangles,
and if they are equilateral the prismoid is facially regular.

There is no limit to the number of members in each of these
geries, and they are not of particular interest. It can be proved
(see, for example, Lines’s Solitd Geometry) that apart from these
there are only thirteen Archimedean solids, two of which occur
in two forms. These two are the two ‘snubs’, and the two forms
of each are related to one another like a left-hand and a right-
hand glove: they are enantiomorphic. The set of thirteen is
illustrated in Plate 2 a.

One of these solids, the truncated tetrahedron, can be in-
scribed in a regular tetrahedron. The next six can be inscribed
in either a cube or an octahedron, and the last six in either a
dodecahedron or an icosahedron. The ‘truncated’ solids are so
called because each can be constructed by cutting off the corners
of some other solid, but the truncated cuboctahedron and icosido-
decahedron require a distortion in addition to convert rectangles
into squares. So the better names for these two solids are ‘Great
Rhombicuboctahedron’ and ‘Great Rhombicosidodecahedron’.
The solids 3.43and 3.4.5.4 can then bear the prefix ‘small’. The
syllable ‘rhomb-’ shows that one set of faces lies in the planes
of the rhombic dodecahedron and rhombic triacontahedron re-
spectively. All Archimedean solids are inscribable in a sphere.
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POLYHEDRA
3.7.1. Truncated tetrahedron. 3.6°
Fic. 103
NET:
Fic. 104
Edge 1 Edge V8
Tetrahedral edge ~ 3 Inter-radius ~ 3

Dihedral angles: 70° 32, 109° 28’.

Prax: ..

Fic. 105

F, ¥, V E
4 4 12 18

0-943.

101
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3.7.2. Cuboctahedron. (3.4)2

NET:
FiG. 107

Edge 1 0-707 Edge 1
Cube edge ~ v2 ' Octahedral edge =~ 2’

Edge 2

Inter-radius =~ 3’

Dihedral angle = 125° 16'.
Praw:

> ————

Fic. 108

Dual of rhombic dodecahedron.

o
w =
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3.7.3. Truncated cube. 3.82

VY,

N

F1a. 109

NET: é ‘é

Fic. 110

N

Edge
Cube edge
Edge
Octahedral edge
Edge
Inter-radius
Dihedral angles: 90°, 125° 16’,

= V2—1 = 0-414,

= 2—V2 = 0-586.

PLAN:

Fi1c. 111

F, F, V E
8 6 24 36

= 3V2—4 = 0-243.

103
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3.7.4. Truncated octahedron. 4.62

{ p
\}. ------ Tl
Frc. 112
NET:

Fic. 113
Edge 1 Edge 1 0-354
Octahedral edge ~ 3’ Cube edge = 242 ~ )

Edge 2

Inter-radius = 3’

Dihedral angles: 125° 16", 109° 28’.

PLANS:

(a) (%)
Fic. 114

F, F, V E
6 8 24 36
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3.7.5. (Small) rhombicuboctahedron. 3.43

. -/
Fic. 115
NET:
Fic. 116
Edge o
EEEEZHQE" V2—1 = 0-414.

Edge V2
Octahedral edge  3-++2 0-320.

Edge (o voy — 07654,

Inter-radius
Dihedral angles: 135°, 144° 44’.

PLaNs:

Fia. 117

(a) (b)

F, F, V E
8 18 24 48
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3.7.6. Great rhombicuboctahedron or truncated
cuboctahedron. 4.6.8

S

NET:
Fic. 119
Edge 2v2—1
fd — 0. .
Cube edge 7 261
Edge 22
Octahedral edge = 3 0-195.
Edge  (2—v2\}
Inter-radius (T) = 0-4419,

Dihedral angles: 135° (8—4), 125° 16" (8-6), 144° 44’ (6-4).
PraNs:

Fic. 120 (a)

) (D)
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3.7.7. Snub cube. 34.4

AN
B

Fi1a. 121 (dextro)
NET:

/

(laevo) Fic. 122 (dextro)
_ Bdge == 0:438 ({5 very approximately).
Cube edge 16
Edge
= 0-336.
Octahedral edge
Bdge  _ 4.g01s.

Inter-radius

Dihedral angles: 142° 59" (4-3), 153° 14’ (3-3).

PraAN:

Fic. 123

F, F, V E
32 6 24 60

107
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3.7.8. Icosidodecahedron. (3.5)>%

NET
Fi1a. 125
Edge TR = N
Dodecahedral edge SIn 54" = = 0-809.
Edge 1
Icosahedral edge ~ 2°
Edge

= 2tan 18°=0-6498.

Inter-radius
Dihedral angle: 142° 37’.

PLAN: /“\
o~
AR

F, F;, V E Dual of rhombic
20 12 30 60 triacontahedron.

—
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3.7.9. Truncated dodecahedron. 3.10?

Fic. 128
Edge 1
= — = 0-447
Dodecahedral edge V5
Edge  _ 3v—1_ (959
Icosahedral edge 22
Fidge 5 1= 0-3416.

Inter-radius _ v56

Dihedral angles: 116° 34’ (10-10), 142° 37’ (10-3).

Pran:

20 12 60 90

Fic. 129
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3.7.10. Truncated icosahedron. 5.62

LR
&

-

NS

NET:

Fia. 131

Edge 1 Edge _T+5V5 0-478
Icosahedral edge =~ 3~ Dodecahedral edge 38 '

Dihedral angles: 138° 11’ (6-6), 142° 37" (6-5).

Praw: Edge Vv5—1
‘/‘\ Inter-radius = 3
00 = 0-4120,

F, F, V E

Fig. 132 ‘.,’ 12 20 60 90
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3.7.11. (Small) rhombicosidodecahedron. 3.4.5.4

Fic. 133
NET:
Fic. 134
Edge V541
Dodecahedral edge — = 0-539.
Edge 3v5+1
Icosahedral edge 22 0-350.
Dihedral angles: 148° 17’ (5-4), 159° 6’ (3-4).
_ Bdge _ otanige Pran: - ~
Inter-radius A K
= 0-4595. K AN D¢
2
A T
F, F, F, V E

20 30 12 60 120 Fro. 135 e
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3.7.12. Great rhombicosidodecahedron or truncated
icosidodecahedron. 4.6.10

Fic. 136
Edge V541
— = ° 24.
Dodecahedral edge 10 03
Edge V5—1 _ 4.906.

Icosahedral edge ~— 6

Edge
Inter-radius

— J3tan18° = 0-2653.

Dihedral angles: 148° 17’ (10-4), 142° 37’ (10-6), 159° 6' (6-4).
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3.7.12. Great rhombicosidodecahedron (cont.)

NET:

Pran: - >
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S
’ \
AY
< y
LN, ,'\\
: -7 \ 4 S
4 N >
‘r\r-— B S
¢ ! \ 4
I’ , .
!
1“"
. \
.
N .- ~ee
T
\
A
\
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1 Y
' 4 . .
[ ' ]
N '
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. N . L"""* P
-
rd

F4
30
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Fic. 137

Fi1c. 138

FB FIO

20 12 120

V E
180
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3.7.13. Snub dodecahedron. 34¢.5

Fic. 139 (dextro

NET:

Fic. 140 (dextro)

Edge
Dodecahedral edge 0-562.
Edge
Icosahedral edge ~ 0-364.
Bdge _ _ .4769,

Inter-radius

Dihedral angles: 152° 56’ (5-3), 164° 11’ (3-3).
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3.7.13. Snub dodecahedron (cont.)

PrLaN:

SO 12 60 150

3.7.14. Isomerism. In the course of construction of
Archimedean polyhedra, it will be discovered that several of
them can be ‘wrongly’ assembled. This means that two or more
polyhedra exist with the same specifications in terms of the
number of faces of each type, but with these faces differently
arranged. This is a phenomenon rather like that of isomerism
in chemistry, where several different molecules may exist with
the same number of atoms of each kind, but differently
arranged. Isomeric forms among the Archimedeans are as follows.

(@) The cuboctahedron (3.4)2. If this is made in two halves,
one half can be given a sixth of a turn relative to the other
before assembly.

(6) The rhombicuboctahedron 3.43 can be altered by giving
one of its octagonal caps an eighth of a turn. In this case,
although the symmetry of the solid is reduced, the local charac-
ter of the vertices is not changed.

(¢c) The icosidodecahedron (3.5)2 can be altered similarly by
rotating one half through 36° relative to the other.

(d) The rhombicosidodecahedron 3.4.5.4 admits a variety of
isomeric forms. It has decagonal caps, up to three of which
can be similarly rotated through 36°.
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3.8. DvaL SoLIiDS

By the Principle of Duality, every three-dimensional figure
composed of points, lines, and planes has a figure dual to it
whose planes correspond to the points of the original figure
and vice versa. In the case of the regular and Archimedean
polyhedra, which are all inscribable in a sphere, the simplest
way to produce such a dual solid is to replace every vertex
by the tangent plane to this sphere, thereby obtaining a poly-
hedron with analogous ‘regular’ features. It is easily seen that
the dual of a regular polyhedron formed in this way is itself
regular; that of an Archimedean facially-regular solid is what
is called ‘vertically-regular’, i.e. it has all its faces congruent
and all its polyhedral angles regular (though of course not all
identical). There is thus a vertically-regular solid correspond-
ing to every Archimedean polyhedron.

These solids are of considerable importance in the study of
crystals, as a number of them are themselves crystal forms, or
are ‘regularized’ versions of the crystal form. They are perhaps
less attractive than the Archimedean solids, no doubt because
the eye does not readily appreciate the regularity of the vertical
angles, and is impressed only by the irregularity of the faces.
Also their symmetry is less easily demonstrated by painting
the faces in different colours.

Two of these solids are here fully depicted, namely those
with rhombic faces. These are the duals of the cuboctahedron
and the icosidodecahedron and have twelve and thirty faces
respectively. They are accordingly known as the rhombic
dodecahedron and the rhombic triacontahedron. The diagonals
of their faces are the edges of the cube and octahedron, the
dodecahedron and icosahedron respectively. The correspond-
ing ‘rhombic’ solid whose diagonals are two dually placed
tetrahedra is the cube.

Note that a cube can be divided into six square pyramids
by joining its vertices to its centre; if these are placed outwards
on the faces of another cube, the rhombic dodecahedron results.

In the case of the remainder, a sketch of an element only of
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the net is given, and a photograph of a set of models is shown
in Plate 2b. Full data of all the Archimedean solids (except
prisms and antiprisms) and their duals are given in Table II,
and from this the reader can construct the full nets and the
solids without difficulty.

The duals of the prisms and antiprisms are the Archimedean
dipyramids and trapezohedra. The dipyramid can be thought
of as two ‘regular’ pyramids placed base to base, having a
central regular polygon of edges, and two additional poly-
hedral vertices on opposite sides of it. If the four dihedral
angles at a vertex on the central polygon are equal, the di-
pyramid is Archimedean. The trapezohedron has a central zig-
zag of edges, and two additional polyhedral vertices. The edges
arising from one of these vertices meet the central zigzag alter-
nately with the edges arising from the other vertex, so that
three edges meet at each central vertex. If the three dihedral
angles so formed are equal, the trapezohedron is Archimedean.
The faces are all ‘kites’, i.e. quadrilaterals with two pairs of
adjacent equal sides.

The face of any dual solid can be constructed by taking the
vertex-figure of the original Archimedean solid (see p. 76). This
figure has a circumscribing circle, which is now drawn. If the
tangents to this circle are drawn at each vertex of the vertex-
figure, they will form the face of the dual solid. (This method
of construction is due to Mr. Dorman Luke.)

Note that while the Archimedean solids have a circumscribed
sphere, their duals have an inscribed sphere. All alike have an
intersphere touching their edges. Data giving the ratios of the
radii of these various spheres for all the polyhedra here con-
sidered are given in Table II.



118 POLYHEDRA 11X
TAaBLE I
Nets of Archimedean Duals
Number of | Net similar to
Name Symbol Element of net elements that of :
Triakis V.3.62 4 Tetrahedron
Tetrahedron
Triakis Vv.3.82 8 Octahedron
Octahedron
Tetrakis V.4.62 6 Cube
Hexahedron
Trapezoidal V.3.43 8 Octahedron in
Icositetrahedron two sets of
four
Hexakis V.4.6.8 8 Octahedron in
Octahedron two sets of
four
Pentagonal V.34.4 8 Octahedron in
Icositetrahedron two sets of
(snub, two en- four
antiomorphs)
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TABLE I (cont.)
Number of | Net stmular to
Name Symbol Element of net elements that of :
Triakis V.3.102 20 Icosahedron
Icosahedron
Pentakis V.5.62 12 Dodecahedron
Dodecahedron
Trapezoidal V.3.4.5.4 12 ’e
Hexecontahedron
Hexakis V.4.6.10 12 ’e
Icosahedron
V.35 2
Pentagonal 3 1 "
Hexecontahedron
(snub, two en-
antiomorphs)
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3.8.1. Rhombic dodecahedron. V(3.4)2

3
9

) Single face
Fic. 143

Edge 3v2
Inter-radius

Dihedral angle = 120°. Ratio of diagonals = v2:1.

PrLans: “

Fic. 144

F V E
12 14 24

= 1'0607.
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3.8.2. Rhombic triacontahedron. V(3.5)?

Fi1c. 145

Wik o

Fic. 146 (a). Net Fic. 146 (b). Single face

Edge  5—-45
Inter-radius 4
Dihedral angle = 144°.
Ratio of diagonals = (v5+41):2 = 1-618:1.
F V E
30 32 60

2

= 0-6910.

(@) A ‘ Fic. 147
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3.8.3. The rhombic dodecahedron and the cube. If a
cube is divided by the six diametral planes which pass through
pairs of opposite edges, it breaks up into six square pyramids.
If these pyramids are assembled outwards on the faces of another
cube, the result is a rhombic dodecahedron. A model to show this
is interesting. Make the six square pyramids of card from the
net shown (Fig. 148). Before sticking up the bases, glue the

V3
L3 “/3

N s AN N7 N
Nav3/ \ev3 [i Re XL RN X
’ ) 4 \\ \\

Fic. 148

bases to a stout tape (or, rather, two crossed tapes) in the form
of a cube-net. The resulting chain of pyramids can be turned
inwards to form a cube, or, turned outwards, placed as a jacket
over another cube to form the rhombic dodecahedron.

3.8.4. The dodecahedron and the cube. In a very similar
way a ‘roof’ can be placed on each face of a cube to form a
regular dodecahedron. The net for each ‘roof’ is given in
Fig. 149. The complete solid appears in Fig. 166 (a).

Fic. 149
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3.9. STELLATED ARCHIMEDEAN POLYHEDRA

Just as the class of regular solids can be extended to include
the Kepler-Poinsot polyhedra, so the class of Archimedeans
can be extended to include stellated Archimedean figures with
star-faces or star-vertices, or both. This is a large class, and
its size depends on the precise restrictions made. For example,
some ‘polyhedra’ have planes which pass through the centre
of symmetry, both sides of which appear on the ‘outside’ of
the figure. One such will be found in the section on deltahedra.

Here we give plans of four members of the class; the reader
who has successfully made the great icosahedron will be able
to construct the nets for himself. They are the ‘quasi-regular’
great dodecadodecahedron and great icosidodecahedron (which
bear the same relation to the Kepler-Poinsot solids as the
cuboctahedron and icosidodecahedron to the Platonic) and their
duals, the small and great stellated triacontahedra.

A full account of stellated Archimedean polyhedra can be
found in ‘Uniform polyhedra’, by Coxeter, Longuet-Higgins,
and Miller, Phil. Trans. A, 246 (1954), 401-50.

3.9.1. Great dodecadodecahedron. (5.3)2

Fic. 150
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3.9.2. Great icosidodecahedron. (3.3)2

Fi1a. 151
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3.9.5. The stellated rhombic dodecahedron

Fic. 154

One figure formed by stellating an Archimedean dual is of
special interest—the stellated rhombic dodecahedron. Thisis a
solid with the vertices of a cuboctahedron; each face consists of
a pair of overlapping triangles. The solid is shown in Fig. 154.

An interlocking puzzle in the form of this solid used formerly
to be on sale in Switzerland—the home of Schlafli and of crafts-
manship in wood-carving.t It consists of six pieces, all of square
cross-section with diagonally-bevelled ends. Omne, no. 6 in
Fig. 155(b), is plain, and must go in last in assembling the
puzzle and be taken out first in dissecting it. The others are
cut away as shown and their relative positions are depicted in
the plan. To make an accurately-fitting model of this requires
great skill, but the finished article is very attractive—far more
so than the puzzle of a similar type with rectangular pieces and
cubic symmetry which has had some popularity in this country.

The solid can also be thought of as a compound of three
distorted octahedra—in reality square dipyramids whose faces
are isosceles triangles with sides proportional to 2, v3, +3.
A cardboard model is, of course, very easily made.

t This puzzle is marketed in Great Britain by Michael Martin (Toys) Ltd.
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Pran:

(a)

Key to puzzle pieces (5 lies behind 4).

F1a. 155

PuzzLE PIECES:

end i side elevation
elevation : : : H

plan plan

Nos. 1, 2,3 Nos. 4, 5
Fia. 156

There are two further stellations of the rhombic dodecahedron,
which are described, with a different method of construction, in
3.13 below. Further stellations of the rhombic triacontahedron
are given by J. D. Ede, Math. Gazette, 42 (1958), 98.
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Data relating to the regular and
Archimedean polyhedra and their duals
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3.10. REgurLAr COMPOUNDS

If a regular polyhedron and its dual are placed together with
their edges bisecting each other at right angles, as explained
in 3.2, a regular compound is formed. There are five of these:

(1) two tetrahedra—XKepler’s ‘stella octangula’;

(2) cube+octahedron;

(3) dodecahedron+icosahedron;

(4) great dodecahedron--small stellated dodecahedron;
(5) great icosahedron--great stellated dodecahedron.

Of these, (4) has the great dodecahedron entirely inside the
small stellated dodecahedron (this can be made with the small
stellated dodecahedron in wire); the other four are shown below,
and also in Plate 15.

3.10.1. Stella octangula (two tetrahedra)

Fic. 158

Cut outline and all heavy lines; score plain lines on the front,
dotted lines on the back. Since tabs cannot be added as usual
to alternate edges, all necessary tabs are shown.

The solid common to the two solids is an octahedron.

The solid which contains the two solids is a cube.

The edges of the stella ootangula are diagonals of the faces
of the oube and meet in pairs at the vertices of the octahedron.
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3.10.2. Cube plus octahedron

NeET:

Score all dotted lines on the back.

The solid common to the two solids is a cuboctahedron.

The solid which contains the two solids is a rhombic dodeca-
hedron, and the edges of the compound solid are the diagonals
of its faces.
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3.10.3. Dodecahedron plus icosahedron

\'

I

9!
AN
£

Fia. 161

NET : The solid is most easily constructed by adding triangular
pyramids to an icosahedron. Twenty pyramids are required:
the net for each is given. The marked edges are half the icosa-
hedral edges; slots must be cut in each face of the icosahedron
as shown and the tabs stuck down on the inside before the
icosahedron is assembled.

PN
(h)
Fiac. 162

The solid common to the two solids is an tcosidodecahedron ;
the solid which contains the two solids is a rkhombic triaconta-
hedron ; the edges of the compound solid are the diagonals of
its faces.
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3.10.4. Great icosahedron plus great
stellated dodecahedron

Fia. 163

Fig. 164 shows the parts of the faces of the two-solids which
appear on the outside of the compound, in one diagram and in
their correct proportion. The solid is most easily constructed
by adding the vertices of the great icosahedron to a completed
great stellated dodecahedron. To do this requires twelve B units
as shown in Fig. 165. Twenty A units make up the visible parts
of the dodecahedron, but there is no need to cut out the triangu-
lar nicks from the corners; it is best, however, to mark their
position.
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% //%
4/ ’/ ///’

[N
C
A
20 of these required. Score
internal lines before folding
(0
o)
Fig. 164 B
AB=AC=BD=CD. tBAC = 36°; 12 of these required. Score
BF = FC = CG = GE = Fli, full lines on front, dotted
BK =KL =MH = HC = HG = GN; lines on back.
DO = BC; £CGN = 60° = £CDO,

LGEN = 22°14’. F1c. 165

It is an interesting fact about this compound that if it is placed
with two trihedral vertices uppermost, in a horizontal line, the
remaining vertices fall into horizontal planes containing 6, 4, 8,

4, 6, 2 vertices respectively. Reciprocally, the planes of the faces
will meet in sets of 6, 4, 8, 4, 6 in points of a vertical line.
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3.10.5. There are also sets of interpenetrating regular solids
which are fitted together with the symmetry of another regular
solid of higher order. They are five in number, and can be seen
in Plate 1b.

(1) Two tetrahedra in a cube (stella octangula).

(2) Five tetrahedra in a dodecahedron (two enantiomorphs).

(3) Ten tetrahedra in a dodecahedron (these two combined).

(4) Five cubes in a dodecahedron.

(5) Five octahedra containing an icosahedron (dual of (4)).

i

(a) (b)
Fia. 166

Apart from the stella octangula already discussed, the starting-
point for these compounds is the pair of dual figures above
which show the cube in the dodecahedron and the icosahedron
in the octahedron. (These figures themselves can be constructed
from wire, wooden slats, or ‘Perspex’ strips and thread. See
Plate 3c.)f

The sides of the octahedron are divided in golden section;
two such icosahedra can be inscribed, or alternatively two octa-
hedra can be circumscribed to the selected planes of the icosa-
hedron, making five in all. Five cubes of the type shown can
be inscribed in the dodecahedron; each cube can be replaced
by two tetrahedra as in a stella octangula; five of these ten
tetrahedra can then be chosen 8o as to have one vertex at each
dodecahedral vertex.

t See also W. Hope-Jones, Math. Gazette, 26 (1942), 44, 45, figs. 5 and 6.
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3.10.6. Five cubes in a dodecahedron

Y i
HETT
n!i!'zl,!i.?h'“

Fic. 167

The edges of the cubes lie by fives on the faces of the dodeca-
hedron forming star-pentagons; each edge is thus divided by
two other edges in golden section.

The solid common to the cubes as a whole is bounded by
thirty rhombi, one on each cube face, and is thus a rhombic
triacontahedron.

The edges of these cubes can be grouped to form equilateral
triangles, ordinary pentagons, and star pentagons, besides the
squares which are the cube faces. By taking different combina-
tions of these figures, several stellated Archimedean polyhedra
can be formed. Full details can be found in Coxeter, op. cit.,
pp. 440-3.
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Construction of net of five cubes

Fic. 168

X
e 90-¢ M1
%190 o
219° )
(2}
X
(a)
Fic. 169
x 3—45 3—4/5
— — 0-382; tanf — 22
Cube edge 2 - 2
A5—1

§ = 20°54';  tang = = 0-618; ¢ = 31°43’,

The intersections of a cube-face with the other faces are shown
in Fig. 168; the solid rhombus is a face of the inscribed rhombic
triacontahedron; the shaded portions are external faces of the
solid compound and form parts of the net. The vertically
shaded portions of four faces fit together to form Fig. 169 (a),
and the horizontally shaded portions Fig. 169 (b). The whole
net is composed of sixty portions like (a) and thirty portions
like (b).



PLATE 1

b. Regular compounds

Back Row: 5 tetrahedra (left), 2 tetrahedra, 10 tetrahedra, cube +-octahedron,
5 tetrahedra (right)

Front Row: 5 cubes, icosahedron--dodecahedron, great dodecahedron- great
icosahedron, 5 octahedra



PLATE 2

a. The thirteen Archimedean solids
(Facially regular)

b. The thirteen Archmidean duals
(Vertically regular)



PLATE 3

a. Dissected block, ellipsoid, sectioned cone

b. Ruled surfaces (‘Perspex’)
1 and 3 Hyperbolic paraboloid ; 2 and 4 hyperboloid ; no. 4 adjustable

¢. Half-twist surface, quartic with double lines, icosahedron
in octahedron

d. Six reguli in a tetrahedron, twisted cubic common to cylinder,
hyperboloid, and cone



PLATE 4

\
L}
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COSINE —f COSINE +

~Na

b. A group of linkages

a. Sine and cosine board

c. Models of wire and strapping
Orthocentric tetrahedron, armillary sphere, Desargues’s figure, double-six
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3.10.7. Five octahedra about an icosahedron

Fic. 170

The vertices of the octahedra form an icosidodecahedron; the
edges are divided in golden section by other edges; the triangular
faces lie two by two on the triangular faces of the insoribed
icosahedron.

Construction of net. We begin by considering the section
of the solid by the plane of a single face. This is shown in
Fig. 171: there are two octahedral faces circumscribed to each
icosahedral face, so that the section consists of two equilateral
triangles. Four of the shaded portions of the section meet at
each vertex of the solid; three of these vertices stand above
every triangular face of one octahedron. Hence, to make the
golid, begin by constructing an octahedron and attach on
each face a set of three vertices whose net is given above.
This can be done by slotting the octahedral face as shown, and
attaching the tabs to the inside of the slots before the octa-
hedron is assembled. The faces of the octahedron must be
slotted alternately as in the figure and as in its mirror-image.
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SECTION BY PLANE OF OCTAHEDRON :

60%a

Fia. 171
o = 22°14’; x = 0-382 X octahedral edge.

THREE-VERTEX NET:

(b)
Fic. 172

Dotted lines scored on back. Slots marked with heavy lines; slots on
edges can be cut where the octahedral net permits.
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3.10.8. Five tetrahedra in a dodecahedron

Fia. 173

The solid common to the five tetrahedra, whose vertices are
at the five-sided ‘dimples’, is an icosahedron, related to the
outer dodecahedron in the same way as the inscribed icosa-
hedron in the great stellated dodecahedron. The lines of inter-
section of tetrahedral planes are parts of edges of this same
great stellated dodecahedron, and parts of diagonals joining its
vertices.

The compound exists in two enantiomorphic forms; if the
two are put together we have a compound of ten tetrahedra,
of which two have a vertex coinciding with each vertex of the
dodecahedron.

Construction of net of five tetrahedra. Consider first
the section by a single face. Three other vertices lie in its plane,
and the section is as shown, the sides of the equilateral triangles
being divided in golden section.

Three pieces similar to the shaded portion meet at each vertex
of the solid and sixty such pieces form its whole exterior surface.
One of the tetrahedra can be made solid and the other four
added to it. The first added tetrahedron will be antipodally
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placed with respect to one of the vertices of the first tetra-
hedron; three of its planes will have sections as shown in
Fig. 174 (b), and the fourth will be the whole triangle with a

Fic. 174

(a) « = 22°14’; x = 0-382 X tetrahedral edge; y = 0-437x.

(b) Section by planes of tetrahedron antipodal to vertex A4;
z = } xedge. Other measurements as in previous diagram. The
three upper sections form a trihedron which fits on a face of the
first tetrahedron.

(c) Section of plane by antipodal trihedron.

triangle of half the side removed to fit over the point of the
other tetrahedron; this is shown in Fig. 174 (c).
Construction of solid. To make the solid, therefore, we
proceed as follows:
(1) Construct a single tetrahedron of the five. Mark one of
its faces as in Fig. 174 (c) and cut slots in part of the sides
of the shaded triangle. Mark the others as in Fig. 174 (b)
and cut slots in part of the ‘zigzag’ edges.
(2) Construot a trihedron of three pieces like the upper half
of Fig. 174 (b) and fit it on the base of the first tetrahedron.
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(3) Construct the net below (Fig. 175): place the point of the
first tetrahedron through the triangular hole and fit the
tabs through the slots in the faces.

(4) The remaining twelve vertices now fit on in chains of
four; the net of one vertex is given.

Fi1ag. 175 Fic. 176

The tabs shown are not all needed, but it is best to provide
them, and they can be easily cut off if not required. There is no
simple way of deciding which will be required and which will not.

3.10.9. Ten tetrahedra in a dodecahedron

Fic. 177

If the two enantiomorphic solids formed by the five tetra-
hedra are put together, the above compound results. The planes
of the tetrahedral faces coincide two by two, so that the com-
pound has twenty faces in all, the same number as the five-
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compound. In the diagram (Fig. 177) the faces are shaded to
correspond with those of the previous diagram.

Construction of net of ten tetrahedra. Consider the
section by a single face shown in Fig. 178. It consists of two
interlaced equilateral triangles (faces of two tetrahedra). Five
pieces similar to the double-shaded portion form a pentahedral

Fia. 178 Fic. 179. Dotted lines
must be scored on the back,
solid lines on the front.

x = 0437 X tetrahedral edge;
« = 22° 14",
‘dimple’ on each dodecahedral face; the spaces between are
filled with four pieces similar to the single-shaded portion.
Thus the solid can be made of sixty double-shaded portions and
120 single-shaded. The best way to make it is to build it on
a stout tetrahedron out of twelve pieces similar to that shown
in Fig. 179. (The inner solid triangle is a face of the inscribed
icosahedron.)
3.11. DELTAHEDRA

This name is proposed as a convenient one for the class of
polyhedra whose faces are all equilateral triangles. They are
the easiest solids to make, since their nets are parts of the plane
tessellation of equilateral triangles 3% (2.9.1). Beginners who
would find difficulty in constructing any of the Archimedean
solids can make deltahedra with ease.

There are eight convex deltahedra, as has been recently
shown by Freudenthal and van der Waerden.t They are the
tetrahedron, octahedron, and icosahedron: the triangular and
pentagonal dipyramids: and three other solids illustrated below

1+ Simon Stevin, 25 (1947), pp. 115-21.
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with sixteen, fourteen, and twelve faces respectively. If names
are required they would presumably have to be the heccaideca-
deltahedron, the tetracaidecadeltahedron, and the dodecadelta-
hedron! These bring the number of convex polyhedra with
congruent regular faces up to ten.

Of non-convex deltahedra only a few more interesting ex-

amples are described here.

(1) The three-dimensional net of the regular four-dimensional
simplex or pentatope consists of a tetrahedron with four equal
tetrahedra stuck on to its faces.
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(a) (b) ()
Fic. 180

(2) A cuboctahedron with square pyramids pointing out-
wards on its faces is merely an octahedron, but if the pyramids
point tnwards so as to meet in the centre, an interesting surface
is formed which can be regarded as made up of triangles and
regular diametral hexagons (see Fig. 243 (c)).

To make it, take the net of the octahedron and divide each
triangle into four by joining the mid-points of the sides. Score
these lines on the front and all others on the back, and join
up so that all the free vertices meet. in the centre. A very
rigid model results.

(3) If the same is done with the net of the icosahedron an
icosidodecahedron results with pentagonal dimples.

(4) Pentagonal pyramids can be described inwards or out-
wards on the faces of a dodecahedron. In the former case (with
the planes of the original dodecahedron removed, of course)
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a deltahedron results with three equilateral triangles in each
of its planes. It is one of the fifty-nine stellations of the icosa-
hedron,} and has been described in 3.6.4 above.

(8) As a class activity tetrahedra and octahedra can be fixed
on the faces of a basic polyhedron, which may be a tetrahedron,
octahedron, or icosahedron, or indeed any suitable convex

Fi1c. 181. Dotted lines must be scored on the back. The
tabs are joined to the edges with the same letter.

deltahedron. The solids that result are amusing but not of
great mathematical interest. In the case of octahedra on the
faces of an icosahedron the solid is only distinguished by narrow
fissures from number (3) above.

(6) To be included here are the rotating rings of tetrahedra
described by Coxeter in his revised edition of Rouse Ball’s
Mathematical Recreations and Essays, p. 153. These consist of
n tetrahedra, each joined to its two neighbours by a pair of
opposite edges to form a ring (» > 6). If n > 8 the ring can
rotate, and if n > 22 it can be knotted. The nets for the cases
n = 8 and n = 10 are here given. For full details the reader
is referred to Rouse Ball, op. cit., pp. 153-4 and 216.

t Coxeter, DuVal, Flather, and Petrie, T'he Fifty-nine Icosahedra, University
of Toronto Studies (Mathematical Series), no. 6, 1938.
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3.12. UNITARY CONSTRUCTION

An interesting method of constructing polyhedra is to build
them from smaller solid units, which will usually be of more than
one kind. This is a suitable method for class use where mass-
production can be employed, individual units being cut from
cards marked out by pricking through a master template. Very
rapid production results. If it is desired to take the polyhedron
to pieces again after assembly, some kind of tongue-and-slot
mechanism must be devised. A cut can be made in the centre
of each face in one of the forms shown (Fig. 182)—they must,

A s

or
Fic. 182

of course, be properly aligned. The ambitious might experiment
with press-studs. Stellations can be added in this way to poly-
hedra, and removed again to show the structure. In addition
many Archimedean polyhedra can be made by adding units to
a simpler solid. The most interesting results arise when some
units are omitted, and also the central polyhedron itself, leaving
a polyhedron with missing faces replaced by tunnels connecting
with another polyhedron inside.

The simplest caseisthetruncated tetrahedron (3. 62). Construct
four units 4 as in Fig. 183. Each unit has for base a regular
hexagon. Alternate sloping sides are right-angled isosceles tri-
angles and rectangles with sides in the ratio 1:3},/2 (2sinm/4:1).
An equilateral triangle closes the top. The net is obvious. If
four such boxes are stuck together by their rectangular faces
they will form a truncated tetrahedron with a tetrahedral hollow
in the interior. The tetrahedron cannot, of course, be seen unless
one box isomitted. Ifeight are stuck together by their triangular
faces, however, a truncated octahedron results with cuboidal
holes where its square faces should be, leading to a cuboctahedral
interior.
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For the solids with octahedral symmetry there are two kinds
of unit. The B-units (Fig. 184) have a resemblance to the A4’s,
but the sloping rectangles have sides in the ratio 2sin=/6:1,
and are therefore squares, so that the sloping triangles are

Fia. 183 Fic. 184

Fi1a. 185 Fia. 186

equilateral. The units are halves of cuboctahedra. Eight B’s,
joined by their square faces, make a truncated octahedron (4. 62)
with its square faces missing, revealing the vertices of an octa-
hedral interior. The C-units (Fig. 185) are caps of rhombi-
cuboctahedra (3.4%). They have regular octagonal bases, square
tops, and their sloping faces are again squares and equilateral
triangles. Six C’s, stuck together by their square faces, make
a truncated cube (3.82) with a cubical interior. If now the eight
B’s and six C’s are stuck together alternately by their triangular
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faces, a beautiful solid is produced, consisting of a great rhombi-
cuboctahedron (4.6.8) with its square faces removed, revealing
cubical holes leading to a small rhombicuboctahedron within
(3.43%). (See Fig. 188.)

The treatment of the icosahedral solids is similar. Twenty
D-units (Fig. 186) whose bases are regular hexagons, whose tops

Fia. 187

are equilateral triangles, and whose sloping faces are alternately
isosceles triangles with angles 36°, 72°, 72° and rectangles with
sides in the ratio 1:7 (2sin7/10: 1), if joined by rectangular faces,
form a truncated icosahedron (5.62) with a icosahedral interior.
Twelve E-units (Fig. 187) whose sloping faces are congruent to
those of the D’s, joined in the same way, make a truncated
dodecahedron (3.10%) with a dodecahedral interior. Finally, if
the D’s and E’s are joined alternately by their triangular faces,
a great rhombicosidodecahedron results (4.6.10), penetrated
by cuboidal holes, revealing the rhombicosidodecahedron inside
(3.4.5.4).

These two combination solids are most attractive, especially
if the B’s and C’s, or D’s and E’s, are made of differently
coloured thin card, and when a light is hung inside they make
most effective decorations.
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Incidentally, beginning with the solid tessellation of truncated
octahedra, we can dissect each unit into a central octahedron
and eight boxes B, then unite the B-units in pairs, and finally
arrive at the tessellation of cuboctahedra and octahedra alter-
nately. In a similar way we can derive the rhombic dodeca-
hedral packing from the cubic via the six square pyramids.
(See 3.8.3 above.)

3.13. THE STELLATIONS OF THE
RHoMBIC DODECAHEDRON

Besides dividing the rhombic dodecahedron into twelve square
pyramids, we can also divide it into units in another way. Each
unit is a pyramid with vertex at the centre of the solid, and with
its base coinciding with a rhombic face. The unit and its net are
shown in the diagrams (Figs. 189, 190).

4 AN

\ /

Fic. 189

Mr. Dorman Luke has recently discovered the remarkable fact
that the three stellations of the rhombic dodecahedron can also
be built from these units; 72 will be needed in all—12 for the
rhombic dodecahedron itself, 12 more for the first stellation, and
24 each for the second and third stellations. Diagrams of all
these are given (Figs. 191-3). Their complete construction from
the 72 units makes an interesting project.
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3.14. PraITING

A nineteenth-century doctor named John Gorham, of Ton-
bridge, Kent, discovered a most interesting method of con-
structing polyhedra by simply plaiting flat strips together. He
published a book on the subject—Plaited Crystal Models—in
1888. Recently Mr. A. R. Pargeter of Southampton hasdeveloped
and extended his methods, and a full account is given by him in
Math. Gazette, 43 (1959), 88. The figures given here are taken
from that article by permission. There is only space to deal with
a few simple cases.

The method consists in dividing the surface of the polyhedron
into quadrilaterals, either by pairing triangular faces, by using
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existing square or four-sided faces, by ‘sectoring’ faces (dividing
them into triangles by joining vertices to a central point), or by
a combination of these devices. Strips are then made, formed
of chains of quadrilaterals, two strips crossing at each quadri-
lateral, and are then plaited together in the ordinary way to
form the surface. The final ends of the strips are tucked under
previous strands and the model is rigid and complete. The
reader will learn more from making a few than from any number
of words.

Paper of good quality should be used, and not card. Cut all
thick lines in the nets, and crease all thin ones; ignore all dotted
lines which are only inserted to show the construction of the
strips. Creases must be accurate and firm. Coloured paper can
be used with advantage; if strips are cut from different coloured
papers most attractive models can be made. In this case the
coloured strips must be stuck together as the nets indicate before
beginning to plait. Since all strips are identical (except for the
ends) they can be cut out together; Pargeter recommends stap-
ling the sheets together, when scissors can be used.

In every case the first plait determines all that follow. This
is indicated in the net; assuming that the net represents the out-
side, so that the main creases are away from the reader, we begin
by putting the faces marked O over the faces marked U (under).
Then each strip goes over and under alternately, and at every
vertex if we rotate in one direction the strips either step up
continuously or step down continuously. A correct start ensures
that at the finish there will be slots to tuck the ends in.

The experimenter is advised to begin with some simple models.
Fig. 194 shows a cube; the net can be very easily cut from squared
paper. Fig. 195 shows a simple net for folding a tetrahedron;
the triangles marked ‘X’ are not necessary, but make the model
more rigid. A firmer tetrahedron with a sectored face results
from Fig. 199; Fig. 198 shows a tetrahedron with all its faces
sectored. Figs. 196 and 200 give simple octahedra; Fig. 201 an
octahedron with a pair of sectored faces. Fig. 197 is the icosa-
hedron. All these nets with equilateral triangles can be cut from
isometric paper which is ruled in equilateral triangles.
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Fia. 194
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Fi1a. 199 Fia. 200

Figs. 202-5 form an interesting series. The nets are similarly
constructed; only the basic rhombi and the folding schemes are
different. In Fig. 202 we have a 60° rhombus folded along a
long diagonal; the result is an octahedron with all faces sectored.
In Fig. 203 we have squares, leading to a cube; again, all faces
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are sectored. In Fig. 204 we have rhombi with angles of 70° 32’
(diagonals v2:1); we fold between the rhombi: result, a rhombic
dodecahedron. Finally, in Fig. 205 the rhombi have angles of
120° (i.e. they are congruent to those in Fig. 202 but joined by

Fi1a. 203

Fia. 205

—+indicates reverse fold

Dotted lines indicate construction only

the other edges); here we fold along the common edges and
make reverse creases along the short diagonals; the result is a
stella octangula. This is not easy to plait; the experimenter
may well prefer to have a solid stella octangula of the same
size on which to operate at first! Do not lose heart—it does work
and a very rigid model results. We could also make the angles
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83° 37’ in Fig. 204 and fold in addition along the short diagonals,
to produce a tetrakis hexahedron; similarly if we make the
obtuse angles 117° 14’ in Fig. 202 and fold in addition along the
common edges, we obtain a triakis octahedron.

u .
Lf" 0 Fic. 208

Fic. 207

D
There is an exactly similar series for the icosahedral group
of polyhedra. Fig. 206 is the net for the icosahedron itself.
A short table of the various modifications follows:

Solwd Obtuse angle of rhombus Crease
Icosahedron 120° Long diagonals only
Triakis icosahedron 119° 3’ Long diagonals and edges
Rhombic triacontahedron 116° 34’ Edges only
Pentakis dodecahedron 111° 24/ Short diagonals and edges
Dodecahedron 108° Short diagonals only
Great dodecahedron 108° Long diagonals, and edges

reversed

Those who have progressed so far will have no difficulty in
constructing nets for other solids. Figs. 207 and 208 give two
ways of folding the cuboctahedron, by way of example. A
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full account of the system can be found in Pargeter’s article
mentioned above.

3.15. MISCELLANEOUS

We shall complete this chapter with a few polyhedral models
of interest.

3.15.1. Hexagonal section of a cube. It is a familiar
piece of work in Elementary Geometry to prove that the face
exposed by a plane section of a cube through XY, X'Y’ (see
Fig. 209) is a regular hexagon. A model which shows this is

(b)

Fi1a. 209
Cut through the thick lines; score all dotted lines. The triangles in

the model are all double.
easily constructed from a square of card as shown; the hexagon
must be made separately, with tabs on all its edges.

All regular solids have such a central section which is a regular
h-gon; where for the tetrahedron, » = 4, giving a square, as seen
in a popular puzzle (cf. 4.9.1b); for the cube and octahedron,
h = 6; for 35 and 53, A = 10; for 3t and (3)3, » = 10; for 5% and
(8)%, h = 6.

3.15.2. Prince Rupert’s cubes. What is the largest cube
that can be made to pass through a given cube? Suppose we
have a cube of wood. The problem is to cut a channel through
it of square section, the original cube remaining in one piece.
What is the largest side of such a square?

Surprisingly enough, the side is greater than that of the
original cube, and the channel is not parallel to a main diagonal
of the cube. It can be proved that a cube whose side is less
than 3v2 = 1-06065 times the side of the original cube can be
made to pass through, and the channel has its maximum cross-
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section when it is in the position shown in the figure (Fig. 210).t
It is easy to make a model of this, but it must be very accurate
if a cube larger than the original is in fact able to go through.

3.15.3. Solid tessellations. Just as there is a finite
number of ways of filling a plane with a pattern of regular
polygons, regularly arranged, so there is a finite number of
ways of filling space with regular or Archimedean polyhedra.

Fic. 210

AG = AH = CK = CL = DM = DN = FP = FQ = }4B.
BI = EO = §AB.

Where there is only one kind of solid we have the following
five tessellations (the second index gives the number surround-
ing an edge):

(1) Cubes (43)4;

(2) Triangular prisms (3.42)84;

(3) Hexagonal prisms (6.42)34;

(4) Rhombic dodecahedra {V(3.4)%}3;

(5) Truncated octahedra  (4.62)3,

1 See German EncyclopaediaIll, Abt.9,Zacharias, p. 1133 ; Cantor, Geschichte,
vol. 3, p. 528; D. J. E. Schrek, Scripta Mathematica, 16 (1950), 73 f., 261-7.
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Of these, number (1) is very familiar, and number (4) is im-
portant, as the arrangement of the centres of the rhombic
dodecahedra is one of the two ways (cubic) of close-packing of
spheres. The other way (hexagonal close-packing) gives rise
to a tessellation of trapezo-rhombic dodecahedra. For details, see
Rouse Ball, op. cit., pp. 148 ff., or Lines, Solid Geometry, p. 146
and pp. 205-7, and section 4.7 in the next chapter.

If there are two or more kinds of solid in the tessellation, and
they are similarly arranged about every edge, we have only
three more tessellations, viz.:

(6) Tetrahedra and octahedra {(33).(34)};
(7) Tetrahedra and truncated tetrahedra (33).(3.62)3;
(8) Octahedra and cuboctahedra (3%).{(3.4)}2.

The construction of these various tessellations is very suitable
for class activity.

3.15.4. Four dimensions. The regular figure in four-
dimensional space is called a polytope, or rather a four-dimen-
sional polytope, as the word polytope is general. There are six-
teen such, six convex and ten stellated. The net of the simplest,
the pentatope, has been given above (3.11 (1)), but a better
idea of it is obtained from a three-dimensional projection of its
edges. This is made simply by joining every vertex of a regular
tetrahedron to a fifth vertex, either outside it or inside, for
example, at its centre (Fig. 211 (b)). Compare the plane pro-
jection of the regular tetrahedron (Fig. 211 (a)).

The next most simple polytope is the tesseract, or hypercube,
which has eight cubic cells. A projection of this can be made
in several ways, but two simple ways are shown. We may
either take two cubes, slightly displaced from coincidence, and
join corresponding vertices by parallel lines (oblique parallel
projection, Fig. 211 (e)), or take two cubes, one slightly smaller
than the other and centrally placed inside it, and join corre-
sponding vertices by concurrent lines (perspective, Fig. 211 (f)).
Compare the two ways of showing a cube in a plane diagram
(Figs. 211 (c) and (d)). Projections of all the convex polytopes
in four dimensions are given in Coxeter’s Regular Polytopes.
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IV

OTHER MODELS IN SOLID
GEOMETRY

4.1. WirE MoDELS

A NUMBER of configurations of solid geometry are of such
frequent occurrence and intrinsic interest that a permanent
model is worth constructing., The simplest configurations in-
volve only the incidence of lines and points and are con-
veniently made in wire.

The technique of making a wire model is simple provided
certain precautions are taken. The wire used can be bare soft
iron wire, which is easily bent into any required shape. Iron
wire can also be obtained covered with coloured plastic insula-
tion at electrical shops. This is a useful form of wire and is
obtainable in various colours. It has the advantage that it is
easy to bend, cut, and solder, and needs no painting. On the
other hand, a model made from it will be distorted by handling,
and straight lines will not retain their straightness for very long.
Hard steel piano wire gives slightly more trouble in construction,
but produces a more robust finished article. Wire of fairly fine
gauge, cut into reasonable lengths, can be obtained from most
good ironmongers. To bend it, first soften it in a flame. Clean the
ends with emery before soldering, and use Baker’s fluid which
gives more certain results than the usual flux. For thicker lines,
steel knitting-needles can be used. To colour the wires, use
glossy, coloured dope such as is sold for covering model aircraft.

We shall give three examples of such models, but of course
the possibilities are unlimited; in particular all the polyhedra
can be made with wire edges, though the plane faces are not
shown in such a model and, for example, the great dodecahedron
and the icosahedron are indistinguishable.

4.1.1. Desargues’s configuration. The properties of this
important figure are most easily seen in a model, including the
proof of the existence of the configuration in space, and the
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complete symmetry of the figure, every point being a possible
vertex of perspective and every line a possible axis. The figure
is shown below (Fig. 212), and in Plate 4c¢; it can be coloured
either to show a pair of triangles, their axis and vertex of per-
spective; or, alternatively, to show that the ten lines fall into
two sets of five, each of which forms a skew pentagon inscribed
in the other.

4.1.2. The orthocentric tetrahedron. This is another of
the important figures of solid geometry. It can be constructed

C
A \
7
H 7
MU L H,
B
F1a. 212 Fia. 213

together with its circumscribing parallelepiped as shown. If
this is done the sides of the tetrahedron, the sides of the
parallelepiped, the altitudes, and mutual perpendiculars should
be coloured differently. It requires care and patience to get the
wires soldered together at the corners. The parallelepiped,
which in this case is a rhomboid, should first be made of twelve
equal pieces of wire, then the diagonals can be measured and the
tetrahedron added, and finally the other lines.

AL, DL are perpendicular to BC; AH, is perpendicular to
DL and therefore an altitude of the tetrahedron. LM is the
mutual perpendioular between AD and BC. H, is the ortho-
centre of the face BCD and H that of the tetrahedron. Further
altitudes and mutual perpendiculars through H can be added
if desired (with rapidly increasing difficulty!). Those shown are
the minimum necessary to show the properties of the figure.

4.1.3. The double-six. The general theorem of the double-
six is due to Schlafli, and the configuration, like the proof, is
somewhat complicated. A special case, however, in which the
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result is obvious, is worth constructing as it leads to an elegant
figure.

The starting-point of the theorem is the fact that there is
just one transversal to two skew lines through every point in
space. This leads to the consideration of the set of transversals
of three skew lines, forming a ruled quadric surface (see 4.3
below). A fourth line not lying in this
quadric will meet it in two points; hence
there are just two transversals to four
general skew lines. Now suppose we take
five skew lines a, b, ¢, d, e with a common
transversal {. There will be one other
common transversal to every set of four
of them. Let the common transversal of bcde be «; of acde, B; of
abde, y; of abce, 8; and abcd, e. Then the five lines afyde have
a common transversal f. That is to say, we have two sets of six
lines, each member of each set meeting five members of the
other set. To prove this, we shall ignore degenerate cases in
which certain lines coincide, which are best treated analytically.

Suppose f is the common transversal, other than a, of Byde.
We must prove that f meets a..

Choose four points on ¢, and three on each of the lines a-e,
none of them being points of intersection of the lines so far
defined. Through these nineteen points a unique cubic surface
C can be drawn. Since it has four points in common with ,
it contains { entirely, which gives it a fourth point in common
with each of the five lines a—e. Hence it contains each of these
lines entirely, and hence, again for the same reason, it contains
each of the five lines afyde. Finally, C contains f, since it meets
it in the four points fB, fy, f6, fe. That is, to recapitulate, all
twelve lines lie on C.

Suppose now that f does not meet «. Then there is a second
transversal of afyd, different from e and f, which we may call g.
g meets C in the four points ga, g8, gy, 96 and therefore lies
in C. That is to say that four transversals of Byd, viz. a, e, f, g,
lie entirely in C. But this would mean that every transversal
of a, e, f, g would meet C in four points and lie entirely in C,

Seaeoa
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i.e. the quadric defined by Byd would belong to C, so that C
would consist of this quadric and a plane. But we have sup-
posed at the outset that no four of a, b, ¢, d, e lie in the same
quadric, so that at least two of them must lie in the plane, which
is not so. Hence our supposition is false, and f must meet a.t
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So much for the theorem; now for an actual model of a specially
symmetrical case.

Consider a cube ABCDA'B'C'D’. Select four of its vertices
alternately, at the vertices of a regular tetrahedron, for example,
ACHB’'D’'. Three edges pass through each vertex; produce these
edges outwards through the vertex to equal distances, thus
obtaining twelve points. Join each of these points to the two
points which lie diametrically opposite to it in the two faces
in which it lies. The result is a double-six of lines possessing
the symmetry of the regular tetrahedron. Every line lies in a
face and meets five other lines, at the centre of the face, and
at the points where it meets the four edges of the face. The
only line of the second set which it does not meet is the line
perpendicular to it in the opposite face. Thus a is perpendicular
to a, b to B, and so on. In the general case they are polar lines

1 This method of proof is due to Hilbert, and it is included here because
there is no easily accessible account in English.
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with respect to a quadric; here this quadric is the imaginary
sphere with centre at the centre of the cubeand (radius)? = — a?,
where the side of the cube is 2a.

To construct the model, shown in Fig. 215, notice that the
lines form three sets of four, connected only by their ends, in
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the form of a ‘double

hair-pin’. The three sets

are identical (see Fig.

216). We therefore con- :
struct three of these Z\/‘ %
units—skew  quadrila- ’

terals with all their plane
angles equal—and fit
them together to form the double-six (Fig. 217).

4.1.4. Other configurations of lines in space. There
are unlimited possibilities of figures composed of lines in three-
dimensional space, but there are a few of geometrical interest
which the reader may care to investigate for himself; e.g.

(a) Mobius tetrads: two tetrahedra arranged so that each
vertex of either lies on a face of the other. The figure
contains eight points and eight planes, but many other
points will be needed in its construction.

(b) Reye’s configuration; projectively equivalent to the figure
consisting of the twelve edges of a cube and its four cube-
diagonals, in which three points are at infinity. This has
twelve points, three on a line; and sixteen lines meeting
in fours at the points.

(c¢) The projections of the regular four-dimensional polytopes.
These are figured in Coxeter’s Regular Polytopes, and in
Hilbert’s Anschauliche Geometrie. (English translation:
Hilbert and Cohn-Vossen, Geometry and the Imagination.)

Fic. 217
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4.2, WoOoDEN MODELS

Of course any model made of wire could also be made with
wooden sticks cemented together, or with plastic cocktail-sticks,
or the slats of cane from dinner-mats. ‘Evostik’ is a suitable
adhesive for use with these. Polyhedra can be made by con-
structing their edges, and, if desired, sheeting of paper or thin
card can be cemented on the framework to show the planes.

This section however is a convenient place to collect together
a few examples of models that can be made out of solid wood.
We shall describe three such which can be made by anyone who
can handle a lathe. The first two are shown in Plate 3a.

4.2.1. A dissected cuboid. In order to prove that the
volume of a tetrahedron is 1 base-area X height, it is usual
to proceed by showing that all pyramids of the same height
and the same base-area are equal in volume. Unlike the situa-
tion in two dimensions, this cannot be done by dissection,
but an argument which is equivalent to integration has to be
employed.

When once this has been proved, it only remains to show that
the formula holds for one such pyramid. This can most easily
be done by dissecting a cuboid into six tetrahedra of equal
volume.

Consider the cuboid 4 BCDA'B’C’'D’ in Fig. 218. First make
a cut through 4 BC'D’ and ob-

e , tain two wedges. Take the wedge
AT \‘*\ 2 ABCDC'D' and cut it down the
AN N plane ADC", obtaining a tri-

¢ \ c T . angular pyramid ADD’C’ and
A N— -—:if\kj ¢’ a rectangular one ABCDC'.
D"‘M’J:”" > b Finally, bisect the rectangular
FiG. 218 pyramid by a cut in the plane

ACC’, obtaining two more

triangular pyramids A BCC’, ADCC".
Then pyramid A BCC’ = pyramid ADCC' in volume, having
the same height CC’ and congruent bases 4 BC, ADC. Also
pyramid ADCC’ = pyramid ADD'C’ in volume, having the
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same height AD and congruent bases DCC’, DD’'C’. Hence all
three pyramids are equal in volume, and each is one-sixth the
volume of the cuboid = }abc = 1(3ab)c = } base area X height.

If the model is made of wood it will be necessary to plane
the faces down again after the saw-cuts have been made and
smoothed, otherwise it will not fit to form a cuboid after the
planing. It is of course unnecessary to dissect the second
wedge.

4.2.2. A sectioned cone. It is often desirable to have a

Hyperbola Parabola i

(a)
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model showing the sections of a circular cone. The construction
involves some accurate work on a lathe. After the cone is
roughly turned down the saw-cuts can be made and planed
smooth. The cone is then dowelled together again and of course
no longer fits. The whole must now be remounted in the lathe,
preferably secured by wrapping round with string or binding,
and the cone turned down again and finished off.

There are two ways of showing the sections; that of Fig.
219 (a) is the easier to make; the other is perhaps preferable
mathematically.

4.2.3. Torus, showing seven-colour map. The famous
four-colour problem continues to interest and to baffle mathe-
maticians. The fact that the problem is completely solved on
the torus, seven colours being both necessary and sufficient, is
surprising enough to provide interest in a model of the seven-
colour map. The usual way in which the map is depicted is by
means of the rectangle with opposite edges identified, which is
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equivalent to the torus, and can be imagined deformed into
one without much difficulty. The map is shown below in this
form; it consists of seven hexagons, each of which touches the
other six.

If it is practicable to turn a torus on the lathe, the map itself
can be marked out and coloured. Divide the ‘waist’ of the
torus into three by three points. Then describe a helical curve
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on the torus which begins at one point, travels all round the
torus and returns to the next point, and so on until after three
circuits the curve returns to its starting-point. Divide the
whole length of this curve into fourteen equal parts. Then
join the first point of subdivision to the sixth, the third to the
eighth, the fifth to the tenth, and so on until every even point
2n is joined to the odd point 2n—5. The result will be seven
elongated areas, each in contact with the remaining six.

4.2.4. Plane section of torus. It is also interesting to show
the section of a torus by a tangent plane through its centre.
Such a plane will touch the surface at two diametrically opposite
points, above and below the plane of symmetry. The section,
surprisingly, consists of two circles intersecting at the points
of contact. A model can be made of wood.
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4.3. QUADRIC SURFACES

These are surfaces whose Cartesian equations are of the second
degree and are analogous to the ellipse, parabola, and hyperbola
in plane geometry. An equation of the second degree in the
plane yields, apart from the case of an isolated point, either
two straight lines, a circle, an ellipse, parabola, or hyperbola.
In space the possibilities are more numerous, and include two
planes, circular, elliptic, parabolic, and hyperbolic cylinders
and cones, the sphere, spheroid and ellipsoid, two different
hyperboloids, and the elliptic and hyperbolic paraboloids. We
shall describe models of most of these.

4.3.1. Cylinders. These are made with the greatest of ease
from an ordinary sheet of paper or card, rolled into a cylinder
of circular, elliptic, or hyperbolic cross-section. The circular
cylinder itself arises in multifarious examples from everyday life.

Nevertheless it has interesting properties, among which the
following can be demonstrated with a model.

(a) An oblique plane section is an ellipse, as can be seen by
sawing the broomstick, or cutting oblique slices from the
polony or cucumber.

(b) If a sheet of paper is wrapped several times round the
broomstick before the saw-cut is made, the edge of the
paper will be cut into a neat sine-curve: an excellent way
of manufacturing decorative shelf-paper.

(c) A straight line ruled obliquely on the paper will, when
the paper is rolled into a circular cylinder, be transformed
into a helix—the ‘screw-thread’ curve.

(d) By using an ordinary compass on a cylindrical surface,
an oval curve can be drawn, but it is not an exact ellipse.

4.3.2. Cones. These again are ‘developable’ surfaces—i.e.
they can be unrolled into a plane, and can be produced by
bending sheets of paper or card. The circular cone is made
from the sector of a circle. This is seen in the common filter-
funnel, and some lamp-shades. These latter are more often in
the form of a frustum of a cone, which unrolls into a sector
of the ring between two concentric circles. In this case a second
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cone can be described containing the two bounding circles of
the lampshade, with its vertex lying between them (see Fig. 222).
If now a lamp is placed exactly at this vertex, the shadow of
the shade cast by the lamp on a plane surface, such as a wall
or ceiling, will be a conic section. In the normal vertical posi-
tion hyperbolas will appear on the walls and a circle on the

Fic. 222

floor or ceiling. By tilting the lamp the ellipse and parabola
can be produced. Many lamps are sufficiently near this con-
figuration to show the sections quite well.

A wooden cone cut to show the sections has been described
in 4.2.2 above.

The circular sector rolled up to form a cone demonstrates

(a) that the radius of the sector is the slant height of the

cone;
(b) that the arc of the sector is the circumference of the base

of the cone;
(c) that the area of the curved surface of the cone is } base-

circumference X slant height.
By drawing straight lines on the flat sector geodesics on the
cone can be shown; in particular it appears that the shortest
route from a point on the base-circle round the cone and back
to itself is not the circumference of this circle.
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4.3.3. Sphere. Spheres confront us everywhere from the
days of the rubber ball in the nursery to those of the globe in
the geography room. Nevertheless, the geometry on their sur-
face is not always easy to visualize, and the geographer often
has the advantage of the mathematician in having a globe with
meridians and parallels drawn on it ready to hand. On such
a solid globe great circles can be drawn and measured, and their
geodetic property is more apparent. The following is a method
of constructing a skeleton ‘armillary’ sphere made of great

(a)
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circles only, by means of which latitude and longitude (polar
angles) and the properties of the general spherical triangle can
be studied. (The description is taken from the American 18th
Yearbook, p. 242.) The sphere can be made very conveniently
from steel strapping of the kind which is fitted round packing-
cases. This is easily cut and punched or drilled, and can be
fastened with brass stationers’ or shoemakers’ eyelets. A com-
plete model so made appears in Plate 4c.

We begin by making a circle of strapping with two holes in it
at opposite ends of a diameter. This must be done accurately,
as the rest of the work depends on it. Cut a strip 1 inch longer
than the circumference required; mark a point about 3 inch
from the centre and punch a hole there. Mark off equal lengths
equal to half the circumference from this hole and punch two
more holes. Coil the strip round and join these holes temporarily
with an eyelet. In the overlap, punch a hole right through and
secure it. Next place two other circles inside this one; they
should be coiled to fit inside before joining up with two eyelets
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apiece. The joins are then staggered round the circumference
and holes are drilled through the set of rings using the outer
holes as a guide. The three are then fixed together with two
eyelets. Finally, an outer equatorial ring is fixed to the outer-
most of the three by two eyelets at the ends of the diameter at
right angles to that on which the other three pivot. We then
have a skeleton sphere consisting of the equator and three
variable meridians at right angles to it. The equator itself can

coloured
collar——
porallel
celluloid plancs
cylinder—"

>
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be rotated if necessary to give a spherical triangle of any shape.

The whole frame can be conveniently mounted on a bill-file,
passing through the two pivotal eyelets.

4.3.4. Sphere and cylinder—Archimedes’ theorem.
Another useful demonstration model in connexion with the
sphere is one constructed to show the fundamental theorem of
Archimedes on which the mensuration of the sphere depends.
This result, which the great Greek mathematician considered
one of his greatest discoveries, states the equality of the areas
intercepted by two parallel planes on the sphere and a cylinder
circumscribing it with axis perpendicular to the planes.

Any solid ball will do for the sphere—a large nursery ball is
a reasonable size. The cylinder can be made of thin celluloid
sheet joined with a celluloid solvent—acetone, nail-polish re-
mover, or durofix. Two flat circular sheets of celluloid or



43 OTHER MODELS IN SOLID GEOMETRY 173

‘Perspex’, of the diameter of the sphere, serve for the planes,
with concentric circles of different sizes cut out of them.

It is a good plan to fit a thin collar of coloured transparent
sheet between them, inside the transparent cylinder, to which
it can be cemented. This serves both to space the cutting
planes and also to delineate the area on the cylinder which is
under consideration. The equal area on the sphere can be
painted to match.

4.3.5. The general quadrics constructed from circular
sections. The next most general quadric after the sphere is
the quadric of revolution; either the spheroids, or the para-
boloid, or the two hyperboloids of revolution of one and two
sheets respectively. These can of course be turned on a lathe
in wood (given the necessary skill, and a template shaped to
the curve of section by a plane through the axis). Spheroids
of both kinds are familiar wherever oranges and plums are
eaten or rugby football is played; the hyperboloid of one sheet
can sometimes be seen in the form of a waste-paper basket,
or in the attempt to turn a cylinder on a lathe when the tool
has travelled in a line which is not parallel to the axis.

The paraboloid appears when a cylinder of liquid is rotated
at speed—a dangerous experiment in inexperienced hands! The
hyperboloid of two sheets is not a common form of surface and
there seems no everyday example of it.

But it is more interesting to make the general quadrics with
an elliptic central section. If they are constructed in the follow-
ing way, from their circular sections, it is not difficult.

4.3.6. The ellipsoid constructed from its circular sec-
tions. A description of this model is given in Analytical
Geometry of Three Dimensions, by W. H. McCrea, p. 110. Since
the model is deformable, there is no need to begin by drawing
the ellipse as there suggested, since in one position it will be
spherical.

Begin then by drawing a circle as shown in Fig. 225 (a).
Mark two perpendicular diameters, and on each of them a
number of equally spaced points, symmetrically placed with
respect to the centre. If the model is to take up naturally the
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form of an ellipsoid, the numbers on the two diameters should
be unequal. Chords are now obtained by joining up the points
in corresponding pairs, giving two sets of parallel chords. Avoid
divisions in which the resulting chords have points of inter-
section very near their ends.

Now cut out from thin card a set of circles with diameter
equal in length to each one of these chords. Mark off along
each diameter points corresponding to the points of intersec-
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tion of this chord with members of the other set. It is as well
to number these points to correspond with the chords. When
this has been done, cut slots through each of these points
perpendicular to the diameter: above the diameter for chords
of one set, and below it for chords of the other. The circle
corresponding to chord 4 B is shown. The slots should be wide
enough to take the thickness of the card.

The circular disks are then fitted together on the ‘egg-box’
principle, corresponding slots being slid together in opposite
directions.

The resulting model can be fixed together either by sticking
strips of ‘Sellotape’ down the ‘hinges’, or by fixing links across
the ends of each slot and cutting small nicks (shown dotted in
Fig. 225 (b)) to accommodate them.

The model is collapsible; it can be flattened out into a plane
ellipse in both directions, and takes up various shapes of ellipsoid
on the way; one axis remains constant and the other two vary
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continuously in such a way that a?cos?6+4b2sin26 remains con-
stant, where 26 is the angle between the diameters in Fig. 225 (a).
For a photograph of the finished model, see Plate 3a.

The two hyperboloids and the elliptic paraboloid can be made
in the same way. In these cases the hyperbola or parabola
must first be drawn and symmetrically placed sets of parallel
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chords inserted as in the diagrams. The rest of the construction
then proceeds as before.

The hyperbolio paraboloid has no circular sections, but it can
be constructed as a ruled surface (see below).

These models can be painted in four colours, one on each set
of parallel faces of each set of circles. The colour change on
deformation of the model is quite startling—indeed the whole
thing is reminiscent of the nursery jack-in-the-box!

4.4. RULED SURFACES

Ruled surfaces are obvious subjects for models, and are
suitable for treatment in various materials. Cardboard and
coloured thread makes a model which can be folded and carried
about in the pocket. Plywood and thread is more durable and
can be strutted to remain rigid. ‘Perspex’ has the advantage of
transparency, so that the surface can be viewed from any angle.
Polyvinylchloride (PVC plastic) thread is excellent for the pur-
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pose if a stout model is required. It is smooth and collects no
dust, is self-coloured, and slightly elastic. If the model is to
be made deformable, elastic thread (coloured Shirlastic) must
be used, as PVC changes shape too slowly. The only trouble
with PVC is that as the plasticizer evaporates the thread is
apt to become brittle, and re-threading may be necessary; this
is not usually an arduous task. Finally, the lines can be made
T T~ of wire or fine brass rod. At least
d ™N one hyperboloid exists with wire
/| A generators, each of which is jointed
x to each generator that meets it by
universal joints, so that the whole
)/ is collapsible both into an ellipse and
a hyperbola. This calls for super-
\\K VV lative craftsmanship of an order
|

i R

L not usually encountered in schools.
Fic. 227. Construction of The planes between which the
ellipse. thread is stretched to form the

surface need to be held apart by rigid struts. A suitable
method is to make use of plastic tubing, which can often be
obtained in the form of paint-brush handles at the chain stores.
A knitting-needle or other rod is passed down the tube, and
the planes are secured to the ends by nuts which the needle
is threaded to receive. (It is wise to soften knitting-needles by
heating before attempting to cut a thread on them.) These
tubes are easily cut to lengths with a sharp knife, and can be
obtained in different colours. A highly pleasing model can easily
be made in this way, and for a very modest expenditure. As an
alternative, dowel rod can be used. The construction of several
types of ruled surface will now be described. Models of a
number of them, made of ‘Perspex’, appear in Plate 3, b and c.

4.4.1. Hyperboloid of one sheet. Draw a circle on a sheet
of paper and divide its circumference into twenty-four or
thirty-six equal parts, starting from the end of a given diameter.
Draw ordinates from all the points to this diameter and reduce
them in a fixed ratio, say by one-half, thus obtaining a set of
points on an ellipse whose cccentric angles have a constant
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difference (Fig. 227). With this as a template mark the points
in exact correspondence on two rectangular ‘Perspex’ or ply-
wood sheets, and also mark four points in the corners for

\
Fia. 228. Completed hyperboloid.
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the struts. Drill all holes with the sheets clamped together.
(Before drilling ‘Perspex’, press a heated needle on the points
to be drilled, to stop the drill wandering.) Then set up the two
planes on the struts and secure. Begin threading from the
end of a diameter on one plane to a hole about 120° further
round on the other (to obtain a good ‘waist’). Continue round
in the same direction, progressing one hole top and bottom
each time. Then with a different coloured thread join up the
other set of generators, joining the first point to the point 120°
in the opposite direction, and so on. The resulting surface is
shown in the figure.
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If the ends are made circular instead of elliptic, a hyper-
boloid of revolution is obtained. It is possible in this case to
mount the upper circle of holes on a disk which can be rotated
relative to the bottom. If this is done, as the disk rotates, one
set of generators will open out towards a cylinder, the other
set will close in towards a cone. If we join each point of the
lower circle to the point 90° in front of it for one set of genera-
tors, and then for the other set join each point to the point 90°
behind it, taking care that the second set of generators lies
wholly outside the first set, then a rotation of the upper circle
through 90° will bring the inner set of generators into the form
of a cone and the outer set into that of a circular cylinder.
Intermediate rotations give various forms of hyperboloid. Since
in this rotation the length of the generators alters, they must
be made of elastic thread. This is a fascinating model if a little
trouble is taken to get it accurately and smoothly made. A
possible method of making the disk is shown in Fig. 229.

An alternative way of making an adjustable hyperboloid has
been suggested by R. F. Wheeler. In this, both sets of generators
of the hyperboloid are continuously deformable from a cylinder
to a cone. The method of construction should be clear from
the accompanying diagram (Fig. 230); ‘Perspex’ can be used
throughout, the disks and annuli being made of sheet, and the
handles of rod.

4.4.2. Hyperbolic paraboloid. A model of a part of this
surface can be very simply made. Take two sheets of card or
‘Perspex’, and mark on them two equal isosceles triangles with
their bases along an edge of each sheet. Mount the sheets edge
to edge so that these bases coincide. If card is used a hinge of
linen or cellulose tape can be used; ‘Perspex’ can be mitred and
cemented or hinged with small brass hinges. Drill holes at
equal intervals down the sides of the two triangles and thread
them so that if the triangles were opened out flat a network
of parallel lines would be formed as shown (Fig. 231 (a)).

If it is desired to make the model so that it actually can be
opened flat, the thread must be elastic. Otherwise an angle of
about 90° between the planes is desirable. There is a model of
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this type in the Science Museum which has brass strips for the
sides of the triangles. These are hinged together so that the
lower one rests in a horizontal plane. This one is perforated so
that the threads attached to the upper movable triangle pass

hinged
triangle

threads
held taut
by weights
mbox |

(a) (b)
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through it and are held taut by small weights concealed in a
prism-shaped box (Fig. 231(b)). The shape of the paraboloid
can thus be varied from the plane parabola, when the triangles
are in coincidence, to the flat rhombus, when the angle between
them is 180°.
. If the model is made at a fixed angle, a
strut should be fitted for rigidity between the
apices of the triangles, as in the end-on view
shown (Fig. 232 and Plate 3 b, No. 1).

A second method of constructing a model

v o, 23 of the hyperbolic paraboloid is described by

T McCrea (Analytical Geometry of Three Dimen-

stons, p. 123). Whereas the previous model shows the inter-
section of tangent planes with the surface—the four generators
which form the boundary of the model—this gives a clearer
picture of the parabolas in which the surface is met by planes
parallel to its principal planes.

We begin by drawing a rectangle and its two diagonals, to
represent the generators through the vertex. On each side of
the rectangle erect symmetrical parabolic arcs of equal height,
as shown in Fig. 233. One opposite pair of these will be bent
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upwards, at right angles to the plane of the rectangle 4 BCD;
the other pair downwards.

To locate the holes for threading, divide each diagonal AC,
BD into an equal number of equal parts. Draw through each
point of division parallels to the other diagonal, to meet the
sides. At the points of intersection, erect ordinates to the

L

M
N
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parabolic arcs. These meet the arcs at the ends of a gencrator.
For example, in Fig. 233, the three points L, M, N will lie on
a single generator. Fig. 234 shows the finished surface.

If this model is made in ‘Perspex’, it will be difficult to drill
the holes at the correct angles through the sheet A BCD along
the diagonals. It will be better therefore to mark the four
parabolas in position on the side faces of an open box: a lid
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can be cemented in, if desired, after threading, to enclose and
protect the whole model (Plate 3 b, No. 3).

4.4.3. The twisted cubic. Two quadric surfaces will in
general intersect in a curve of degree 4. But if they have a
generator in common (which means that in real geometry they
must be ruled surfaces) then the curve of intersection will consist
of this generator and a curve of degree 3, called a twisted, or
space cubic. It can be proved that this cubic is not a plane curve,
that it meets the common generator in two points, that infinitely
many quadric surfaces can be drawn to contain it, and that in
particular the chords through any point of it generate a quadric
cone. A model to show some of these facts is well worth con-
structing and throws a flood of light on the relationships of the
various surfaces. The mathematics is interesting in itself.

We shall describe a special case, when the twisted cubic touches
the common generator at infinity. Further, for simplicity we
shall take the quadrics to be a hyperboloid of revolution and a
cylinder whose sections by planes perpendicular to the axis of
the hyperboloid are circles. It will be found that the sections
of the quadric cones by the same planes are also circles.

Consider the hyperboloid (x2+y2)/a?—2%/c? = 1. Take the
intersection of x = a and cy = az as common generator. The
plane cy = az touches the hyperboloid at infinity; the plane
x = a touches it on its ‘waist’ in the plane z = 0, which is the
circle 22+4y2% = a? in that plane. The cylinder which contains
this generator, touches cy = az, has circular sections by planes
z = constant, and contains the point (0, a, 0) (a further simpli-
fication) is (x/a—1)2+(y/a—z/c—1)2 = 1. Any point on this
cylinder is given by the equations

x = a(l—sinf),

y = a(t+1—cos8),

z = cl,
and will lie on the hyperboloid (and hence on the cubic, provided
cosf # 1)if t+1 = cot 6. (The reader can verify this by substi-
tution in the equation.)

The quadric cone which has vertex at (0,a,0) and includes
the twisted cubic can be found by eliminating ¢ in such a way
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as to obtain a homogeneous equation in z, y—a, z; again the
reader can verify that its equation is

c{x’+(y—a)}+az(x—y+a) = 0.

Its section by the plane z = ct is the circle

2(z-+at)+ (y—a)(y—a—at) = 0,
which has the join of (0,a), (—at, a+at) for diameter.

The situation in the plane z = ct is shown in the diagram
(Fig. 235). The geometry of it is interesting. The three circular
sections of cone, hyperboloid, and cylinder are shown. P is the
point on the twisted cubic, R the point on the common generator.
The circle A BC is the orthogonal projection of the ‘waist’ of the
hyperboloid: P that of the generator through P belonging to
the opposite system to the common generator. The geometry
of the figure shows the equality of the angles RK P, COQ, TLP,
all of which are equal to 6. Hence, as P traces out the twisted
cubic, the generators of the three quadrics rotate at equal rates
about the circular sections. This fact makes construction of a
model very easy. The figure will well repay careful study.
RAR' is the projection of the common generator of cylinder
and hyperboloid; TBT' that of the cylinder and cone; and
SBS’ that of the cone and hyperboloid.

To make the model, construct the diagram of Fig. 235 for two
values of ¢; t = 43 and { = —3 are convenient. In the plane
z = 3c the circles are

Hyperboloid: z2+4y2? = 10a?
Cylinder: (r—a)?+(y—4a)? = a?
3a\? 5a\? 9a?

Cone: (x+-2—) +(y_?) =
and the point P on the twisted cubic is (Sl)—:, il?;—a, 30) .
In the plane z = —3c the circles are

Hyperboloid: x24y2? = 10a?

Cylinder: (x—a)*+(y+2a)? = a?

3a\? a\? 9a?
Cone: (x---2_) +(y+§) =
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9 13a .
and P is now (—5—“, — 5 —30)- The diagram is drawn to scale
for ¢t = 3; the circles for { = —3 are shown pecked.
S ore

Fic. 235

Inscribe these circles on two sheets of ‘Perspex’; drill holes
at equal angular intervals round the circles. Since it will be
convenient to pass both sets of generators of the hyperboloid
through the same holes, we shall need a hole at R; in addition
we need to accommodate the generators coming up from the
opposite plane. The valuesoffatt = +3are 28° 4’ and 306° 52’;
if we take forty subdivisions we can approximate to these as 27°
and 306° with sufficient accuracy. A large model will, however,
be needed to include forty generators on the cylinder. We
therefore mark off points on the three circles, starting from P
in each of the planes, at angular intervals of 9°. It will be found
that in each case the drill-holes for the hyperboloid will fall at
the points on the axes within the limits of error; the generators
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are threaded from each hole on one circle to the points sixteen
holes away on the opposite circle. One generator of each system
on the hyperboloid, cone, and cylinder will pass through each
point of the twisted cubic, which can be marked by a bead
threaded on the four generators. A completed model appears
in Plate 3d.

The twisted cubic can also be displayed in a model as the
edge of regression of the surface formed by its tangents. The
simplest method is to consider the cubic given by the parametric
equations x:y:z:a = 63:02:0:1. The equations for the tangent
at 6 are then x—20y 4622 = 0 and y—260z-+0% = 0. The surface
can be conveniently generated by threads stretched between
the planes of the cube x = 4-a, y = +a, z = +a. It will be
found that the curves of section in the planes = 4-a are
mirror images; in x = +-a they are given by

y 0342 z  14-26°

a 30’ a 36
In the same way the curves in z = +a are mirror images;
that in z = a is given by x/a = 36*—263, y/a = 260—62. In the
plane y = a, however, there are no intersections within the
The cube is conveniently made in the form of an open box of
‘Perspex’ with the plane y = a missing; the points on the other
planes should be plotted by giving values to 6 from —1-6 to
+1-6. If this is done at intervals of 0-1 it will be found that
only two points (for § = 4-0-5) fall on y = —a. The points
are drilled and the surface threaded as usual. The resulting
model is shown in Fig. 236. The open plane y = a is at the
top; z = a is at the front left, x = a at the front right.

4.4.4. Quartic with two double-lines. As an example of
ruled surfaces of higher degree we select first the quartic sur-
face with two perpendicular double-lines whose central section
is a circle. This is a surface of great importance in optics, for
it is the envelope traced out by the rays of a pencil reflected or
refracted at a spherical surface. These rays pass through two

cube-face; in y = —a we have z = .;_(0—
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Fic. 236

focal lines at right angles, midway between which is the ‘circle
of least confusion’, the minimum section of the quartic surface
formed by the rays. A simple but not very convincing example
of such a surface is provided by the ‘old-fashioned humbug’.
These potent sweetmeats seem to be made by twisting the
material in just this way between two perpendicular skew lines
at their extremities. A long foolscap envelope, with its open
end sealed in a line perpendicular to its closed end, has also
approximately this shape.

To construct a model, take two square plates of ‘Perspex’ or
plywood and mark on them two congruent ellipses with their
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major axis three times the minor axis. Points are marked out
on the circumference of the ellipses separated by constant
differences in eccentric angle. Holes for the threads are drilled
at these points. (It is simplest to mark only one ellipse in fact,
and to drill right through the two sheets clamped together.)

Fig. 237 shows how to construct the points and also how to
join up the points in the subsequent threading.

3a 0,
A, A
a
IZ’ [2] Bg
Q.
Fia. 237

PN, = 1@, N, BN, = 3@, N,, 4,0, Q, = B,0,Q, and is in
the same sense. The ellipses are mounted in parallel planes
with their major axes at right angles. A point such as P, with
eccentric angle 6 on the upper ellipse is joined by a thread to
the point P, with eccentric angle }w+6 on the lower ellipse,
the radii O, @,, O, @, being always directed in diametrically
opposite directions.

If the ellipses have semi-axes 3a, @ and are in planes 4b apart,
we can take the axes of x and y parallel to the major and minor
axis of one ellipse, and the axis of z as the line joining their
centres, the origin being the mid-point of this line. Then the
five points

(3acosf,asinf, 2b), (2acosb,0,b), (acosf, —asinb,O0),
(0, —2asind, —b), (—acosf, —3asinb, —2b),

are always collinear, so that the generators of the surface inter-
sect the lines (y = 0, z = b), (x = 0, z = —b), in a segment of
length 2a, and also the circle x2+4y? = a2, z = 0.
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The exact value of the ratio b/a is immaterial but it is con-
venient to have it about 2:1 or 3:2. The positions of the
coordinate axes, double lines, and central circle are shown in
Fig. 238. A model is shown in Plate 3c¢.

’

—
_ . -
: — = —
// -
=9 T
,/j y

= 2, 12= 02

g;g; X<+ : a }

z=2b Zz=-2b
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4.4.5. Right helicoid. As a further example of ruled sur-
faces the right helicoid will be briefly discussed. This is the
surface swept out by a line which always intersects a fixed axis
at right angles and which rotates uniformly as its point of
intersection moves uniformly along the axis. It intersects any
cylinder concentric with the axis in a helix—the screw-thread
curve. Small aerials in the form of a right helicoid are familiar
to wireless enthusiasts.

A model of the surface is easily made from wire, soldered at
right angles to a rigid rod for axis. A more interesting model
is obtained with rather more trouble by threading between
curves in perpendicular planes.

If we take the axis of z along the axis of the helicoid, its
equation can be taken as y = xtan(z/a). We wish to find the
curves in which this surface is met by two planes through Oz,
bisecting the angles between the planes Oz and xOy. The
easiest way to do this is to take these as coordinate planes,
by rotating the axes of y and z through }= and leaving the
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axis of x unaltered. Then if ¥’ and 2z’ are new coordinates,

—yl_zl ——yl+zl
y="gg° *= 33

so that the equation of the surface becomes

y'+2

—2' = aVv2t
Yy —z = zv an=o-.

Dropping the dashes, we obtain for the curves of section with
the planes y = 0 and z = 0,

y=20 z2=20

x 2 z and |z y y
Z—= -~ cot |- - t

a av2 (a~/2) a = a2’ (ax/2)

The curves are identical, but face in opposite directions.

The whole of the line ¥y = 0, z = 0 lies in the surface, but
on the first plane y = 0, x > —a as z > 0, whereas on z = 0,
x—> -+a as y > 0.

If a = 100, corresponding values of z and y for the curve of
section with z = 0 are given in the accompanying table at

equal intervals of y.

yl 0 | 185 | 37 555 74 92-5 111 129-5 148 | 166-5
z| 100 995 {977 951 90-7 85-3 78-5 70-3 60-4 | 489

y| 185| 203-5 | 222 | 240-5 259 2717-5 296 314-5 333 | 3515
x| 35-1] 19-0 0 | —224( —490| —81'1| —1206| —170-3 | —235| —323

These points are now plotted on two plates and drilled
through. The plates are then mounted at right angles, after
being bevelled along the z-axis, so that they lie, with their x-
axes coincident, in the planes y = 0,2 = 0. Care must be taken
to ensure that the origin coincides. It is convenient to drill an
extra hole at the origin so that a thread can be stretched from
it to a strut between the plates, lying along the axis of the
helicoid.
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The generators are threaded between the drill-holes corre-
sponding to points with equal values of y and z. The resulting
surface is shown in Fig. 239.

—
Ny AN

e

Z'—‘O y A

S
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4.4.6. Other ruled surfaces. There are of course a large
number of other surfaces which can be made. Some of the most
interesting ones are the ‘twist surfaces’ allicd to the Mobius
strip, which is discussed more fully in the section that follows.

Imagine a point P moving round a fixed circle. If the point
carries a line [ which is always perpendicular to the tangent to
the circle at P, the motion of ! will generate a ruled surface.

(i) If 1 is perpendicular to the plane of the circle, it will
generate a circular cylinder.

(ii) Ifl passes through a fixed point it will generate a circular
cone.

(iii) If I rotates about the tangent as axis with half the
angular velocity with which P describes the circle, [ describes
the ‘half-twist’ surface. This is of the same kind—except that
it extends to infinity—as the surface of a strip of paper twisted
once (a half-revolution) and joined end to end—the Mobius
strip of the first order. The surface is therefore one-sided. It
has the cubic equation

(2 +y?4-2%)y—22(224-y?)—2azx—a?y = O
(the circle being x%2+y? = a2, z = 0; and the initial position
of |, x = —a, y = 0).
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There is a line of double-points, x = —a, y = 2, and the axis
of z lies wholly on the surface.

The surface is conveniently made by joining points on the
curves in which it is cut by planes z = 4-Aa. These points can
be plotted parametrically by observing that the generators
are the lines joining (acosf,asin@, 0) to (0,0, —atan 16). See
Plate 3c.

A model could of course be made with rather less trouble
in wire.

(iv) If [ rotates about the tangent with the same angular
velocity as P, it describes the ‘full-twist’ surface, equivalent
to the Mobius strip of the second order. This is a quartic
surface with equation

yi+4223(y2—22%)—2azxyz—a?y? = 0.

It is two-sided, and it has the xz-axis and the z-axis as double-
lines. The ‘one-and-a-half-twist’ surface, corresponding to the
Mobius strip of the third order, is again one-sided, of a more
complicated shape. Higher order twist surfaces can be similarly
defined. See A. Emch, Mathematical Models, Univ. Illinois
Bulletin, 18 (1920) 12.

4.5. MOBIUS STRIPS

Take a long strip of paper with parallel edges. If the ends
are brought together and joined, a cylindrical surface is formed
with two sides and two bounding edges. But if one edge of the
original strip is turned through 180° before joining, the resulting
surface has only one side and only one bounding edge (Fig. 240).
It is usually called a Mdbius strip after the geometer who first
discovered its properties. Any point on the strip can be joined
to any other point on the strip by a curve lying wholly on the
strip and not crossing the bounding edge. This is not the case
with the ordinary two-sided surface.

The bounding edge is not knotted, and can be deformed into
a cirole, carrying the surface with it, which must be allowed
to intersect itself. If this is done the resulting surface is known
as a cross-cap. Of course it is still one-sided. Such a cross-cap



192 OTHER MODELS IN SOLID GEOMETRY v

is shown in perspective and in a contoured plan in Figs. 241
(a) and (b).

Fia. 240

(a) (b)
Fic. 241

If the strip is twisted through 360° before joining, a ‘Mobius
strip of the second order’ results. It is two-sided and has two
boundary curves, but they are linked together. Generally, if
there are n half-twists before joining, we obtain the Mobius
strip of the nth order. If » is odd, the surface is one-sided and
possesses a single boundary curve which is knotted for n > 3;
if » is even it has two sides and two linked boundaries.

Some amusement can be had by cutting Mobius strips of
various orders down their centre-lines. If » is even, two strips
similar to the original result, linked together in the same way
as the boundary curves. If » is odd, only one strip results,
similar to the boundary curve, i.e. for » > 3 it is knotted. It
has 2n-4-2 half-twists: n for each circuit of the original and
two extra gained when the coils are opened out. If the strips
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are trisected, the centre strip will resemble the original, but the
outer strips will be single or a pair, like the result of bisection,
and they will be linked to the centre ring.

4,6. ONE-SIDED SURFACES AND THE KLEIN BoTTLE

A closed surface with only one side seems at first sight to
be impossible, but it is easily obtained in the following way.
Take a piece of rubber tubing—an old piece of cycle inner-
tube will do—and turn one end outside in, like a ‘flyped’ sock,
or a non-spill ink-well. Push this down inside the tube and
bring it out through a slit in the side. Then take it round and
join it on (still inside-out) to the other end of the tube. The
result is the Klein bottle, which has only one side, and no
boundary. It can also be obtained (in imagination) by uniting
the parallel edges of a first-order Mobius strip to form a closed
tube, which necessitates allowing the tube to intersect itself in
the above manner. It is deformable into a sphere with two
small circles removed and replaced by two cross-caps, but
most people find this far from obvious and very difficult to
visualize. An algebraic surface with this form has equation

a2(x2+y2)(b2_x2_y2) — 22(a2x2+62y2).
A beautiful Klein bottle of blown glass was exhibited by Pro-
fessor Hassé at the Mathematical Association’s Visual Aids
Exhibition in 1947. A diagram of the Klein bottle is shown in
Fig. 242 (a). With it (Fig. 242 (b)) is given a diagram of another
famous one-sided surface—the quartic surface
y2i 422 oyt ayz = 0.

This surface was investigated by Steiner who called it the
‘Roman surface’, but in this country it is more commonly
known by the name of its discoverer. It contains each axis as
a double-line, and has ‘pinch-points’ at (434,0,0), (0, +3%,0),
(0,0, 4-3). Further, it touches the plane z+y-+42 = } along the
circle through the pinch-points lying in this plane, and contains
three other similar circles in alternate octants. A model can be
made of plasticine: it is well to begin with a fixed framework
of three mutually perpendicular axes.
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(See p. 143)
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4.6.1. This surface is homomorphic with (i.e. it can be con-
tinuously deformed into) a polyhedron consisting of alternate
triangles of an octahedron joined by the three diametral squares.
This obviously has the same symmetry and one-sidedness as the
Steiner surface and is much easier to construct. A diagram of
this polyhedron (the heptahedron) is given in Fig. 243 (a). Its
net can be easily drawn if the trihedral ‘dimples’ are thought of
as three separate triangular faces. The one-sidedness is most
apparent if the surface is made of transparent material—cello-
phane or thin celluloid sheet. The heptahedron is an ‘Archi-
medean’ polyhedron in the broad sense, since all its faces are
regular polygons and all its vertices are congruent. There are
several other Archimedean polyhedra with diametral planes:
the one depicted in Fig. 243 (b) is also one-sided; it has the
squares and diametral hexagons of a cuboctahedron. Fig. 243 (c)
shows the polyhedron referred to in 3.11 (2). It can be regarded
as a ‘deltahedron’, or as consisting of the triangles and diametral
hexagons of a cuboctahedron. It is two-sided, but the ‘sides’
meet at vertices, alternate triangles belonging to alternate
‘sides’. In the case of the icosidodecahedron, either the tri-
angular or the pentagonal faces may be removed and replaced
by the diametral decagons; in either case a one-sided surface
results of the same type as the first two depicted in the figure.

4.7. SPHERE-PACKS

This is a large subject and difficult to visualize without
models. The general sphere-pack borders on the subject of
crystallography and is rather more than elementary, but it is
worth while studying the two types of close-packing, because
everyone has some experience of packing spheres—tennis-balls,
golf-balls, oranges, or even marbles!

The best, cheapest, and most uniform spheres for demonstra-
tion purposes are table-tennis balls. They can be stuck together
with ‘Durofix’, or their waywardness can be overcome by con-
fining them in a box or tray. This can be rectangular in shape
to demonstrate cubic close-packing (face-centred cubic lattice).
A square of sixteen balls will be needed as base if it is desired
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to show the twelve neighbours of a given ball. The arrange-
ment of the balls in three layers 1, 2, 3, and the base of a unit
cube of the face-centred lattice are shown in Fig. 244 (a).

Fic. 244

Alternatively, both cubic and hexagonal close-packing can
be demonstrated with a hexagonal base-layer of twelve balls,
packed 2-3-4-3 as in Fig. 244 (). For hexagonal close-packing
the third layer of balls stands vertically over the first; for cubic
it takes the position indicated and the fourth layer repeats the
first. It is interesting to identify the two models of cubic close-
packing; though unless a larger number of balls is used the
complete face-centred cube does not appear in either model.
The hexagonal tray necessary to enclose the second pile of balls
has alternate sides 1-41/v3 = 1577 and 2-+4+1/v3 = 2-577
times the diameter of a ball. Instructions for making a cover
for the stack are given by Hope-Jones, “The Rhombic Dodeca-
hedron for the Young’, Math. Gazette, 20 (1936), 254, to which
article the writers are considerably indebted. This article also
discusses the connexion with the bee’s cell, for which see-also
D’Arcy Thompson, On Growth and Form, pp. 525-44.

The rhombic dodecahedron arises in the cubic case if we
imagine each ball swelled out to meet each of its twelve neigh-
bours along the tangent plane; the area of contact becomes a
rhombus, and the solids themselves are now rhombic dodeca-
hedra.

In the case of the hexagonal close-pack the corresponding
faces are rhombic, where a ball in layer 2 meets its three neigh-
bours in each of layers 1 and 3, and trapezia, where it meets the
six neighbours in its own layer. The ball thus becomes a twélve-
sided solid called a trapezo-rhombic dodecahedron (Fig. 245).
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The cubic and hexagonal close-packings are equally dense—
i.e. an equal number of spheres can be packed by either method
into a volume sufficiently large for edge effects to be neglected.
This is obvious from the second model, where the two are seen
to differ only by the arrangement of spheres in the layers, both
the number of layers and the number of spheres in them being
the same. The fraction of volume occupied
is the ratio of the volume of a sphere to that
of a rhombic dodecahedron, i.e. to two cubes
of sides 7v2, i.e. 7/3v2. These cubes can be
seen in the first model; the bases of two are
shown in plan in broken lines in Fig. 244 (a).
They are exactly the height of a layer, and
their centres are alternately occupied and
unoccupied by the centres of spheres. Each sphere therefore
requires two cubes. The rhombic dodecahedron is formed by
adding to the faces of one cube six square pyramids whose
vertices are at centres of the neighbouring six (empty) cubes.
These six pyramids exactly fit together to form one such cube.
Hence again the volume of the rhombic dodecahedron is that
of two such cubes.

The hexagons whose vertices are the centres of the spheres
of the second model are the hexagonal sections (3.15.1) of the
lattice cubes (full lines) of the first model, displaced by the
length of half an edge of the lattice cube.

Fi1c. 245

4.8. METHODS OF MODELLING SURFACES

Models of surfaces are to be seen in most mathematical
libraries and museums. The majority of these are made of
plaster of Paris, which is not an easy material for the amateur
to handle. If it is desired to attempt the construction of a
plaster solid, the best material to use is ‘Pioneer’ plaster, or
a similar slow-setting compound, which gives plenty of time
for manipulation and can if necessary, when practically set, be
carved with a knife. It may take a day or more to set fully hard.

It is best to build up some kind of ground-work first. A sur-
face designed to rest on a flat base can be built up in contoured
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layers of wood, plaster-board, or similar material, and the
plaster employed only to fill in the gaps. This is the best way
to make a plaster relief-map where contours can be traced from
flat maps. For a more general surface a ground-work of wire
or gauze can often be improvised. For example, in the case of
Steiner’s Quartic, described in 4.6, a framework of wire circles
joined by the axes may well be made the starting-point. Some
guide for the moulding of the surface is almost a necessity.
Alternatively the surface can be cast in a mould of papier-
maché or layers of plaster-board; it should be smoothed down
after a few hours with a knife, and finally, when fully set, with
coarse glass-paper.

Modelling-clay is more suitable for the amateur; it can be
fired if it is desired to make the model permanent. Plasticine
can be used for temporary models. Here again for accurate
work a ground-work is desirable.

4.8.1. Functions of two variables. The surface represent-
ing z = f(x,y) can be modelled in several ways. The simplest
method is to mark out the (z,y)-plane on a cork or wooden
base-board and erect knitting-pins, hat-pins, or straws of the
appropriate lengths at points corresponding to definite values
of x and y. Integral values will usually be sufficient.

A better method is an extension of the idea employed in
4.3.5 to build the quadrics from their circular sections. It
consists of constructing cardboard sections which are inter-
locked in the same manner as the partitions in an egg-box.
Consider as an example the surface given by z = x2—y2410.
The vertical section through XOX’ is z = 2%+ 10 (correspond-
ing to y = 0). This is drawn on card and cut out; the ordinates
at x = 2,1, 0, —1, —2 are cut through from the base for just
over half their heights. The vertical sections, parallel to this
one, corresponding to y = 41, y = +2 are constructed in the
same way: their curves are z = x2+9, 2 = 2246, and time is
saved by using a template of the curve z = x2, which can be
used for all. The sections perpendicular to these, corresponding
to the values 0, 4-1, 42 of x, and whose curves are

z = —y*+10, z= —y2+11l, 2z = —y?2414,
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are now constructed, but the ordinates here are cut from the
top down to just over half-way. If the cardboard is thick, the
cuts will have to be widened, but otherwise the sections can
be slipped easily into place. Lastly, the four outermost sec-
tions, whose curves are z = x2-}1, z = —y24-19, are made and
fitted into place. These need only two cuts each, as shown,

Y
X |19 X \\,\/
Ee====miinl
Y’ 3-2-1 O 1 2 3

(a) (b)

Y 3} Y’ 3210123

() (d)
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as they surround the whole. If it is considered desirable the
interior can be filled with clay or concrete. A suitable scale for
this model is 1 inch for 2 and y units and } inch for the 2 unit.

Another method is to build up horizontal layers of wood cut
to the shape of successive contours. The curves corresponding
to the values z = 1, 2, 3,..., 18, 19 are

x2—y? = —9, x2—y? = —8, ‘v
x2—y? = 8, x2—y? = 9.

The curves can be drawn on squared paper glued to three-ply

wood and cut out with a fret-saw. Modelling clay or putty can

be used to round-off the steps, but it is not necessary.
Alternatively, we can construct the sections of a surface by
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planes z = constant and cut them out of cardboard for equal
intervals of z over the range desired for the model. Draw on
these sections lines parallel to an axis, say the z-axis, at equal
intervals of y, and cut slots in them from the edge of the section
inwards for a fixed distance. Now on another set of cards
prepare the sections by the planes y = constant, at the same
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intervals of y. Draw again the lines parallel to the z-axis and
slot them to within the fixed distance of the edge, so that they
can be pushed into the slots of the other cards, and so build up
the surface by means of a rectangular network of cards as
before. See Fig. 247, where a cubic surface of the form

z = 2} (x—3)—y?

is shown under construction in this way. This surface can be
conveniently made from z = —2 to 6. Other surfaces suitable
for sectional construction are

z = (22+y%—c?)—4c%?
and 2 = a(@i—3y?),

from z = —3 to 4-3. This last is a surface called the monkey-
saddle, because it has a third depression for the tail.
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4.8.2. Use of glass plates. The same principle can be
carried out in a different way. The sections of the surface by
the planes z = constant can be drawn with a chinagraph pencil
on glass plates—lantern-slide cover-glasses are excellent for the
purpose and can be obtained very cheaply—which are then
mounted in parallel planes. For a single model the glass plates
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can be spaced by slats of wood along opposite edges—wooden
spills will serve—and clamped together. But if a number of
surfaces are to be shown a wooden rack can easily be used, either
a photographic plate-drying rack, or a home-made article which
can be constructed by cutting parallel horizontal grooves in
two vertical side-pieces as in Fig. 248. The eye integrates the
sections into a surface quite satisfactorily if the interval is not
too great.

4.8.3. Use of a lathe. Obviously any solid of revolution can
be turned on a lathe; the construction is facilitated by cutting
a template with its edge in the form of the curve whose rota-
tion generates the solid. If the tool can be traversed at an
angle to the axis, a cone can be cut mechanically; if, which is
rarely possible, the cutter can be moved along a line skew to
the axis, the one-sheeted hyperboloid will be produced.



202 OTHER MODELS IN SOLID GEOMETRY 1v

4.9. PuzzLES

Many books and articles on mathematical puzzles have ap-
peared in recent years and we do not propose to give a full
account of them here. But a small collection of models of the
‘puzzle’ type will add considerably to the interest of any mathe-
matical display, so that we shall describe a few.

4.9.1. Solid dissections. We begin with a few simple
examples.

(a) A cube dissected into three pyramids. Make three solids
from the net shown in the diagram: they can be fitted together
very easily to form a cube. This gives another method of
showing the formula for the volume of a pyramid.

1 V2
1
V2 1 1 V3
1
V2 V3
Fic. 249

(b) Slightly harder is the dissection of the tetrahedron into
four congruent pieces. The net for one of these is given. Make
four of these; they take a little fitting together.

Fia. 250
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(c) The Soma cube. This is a 3 X 3 X 3 cube dissected into six
pieces composed of 4 unit cubes and one piece of 3 unit cubes.
They are shown in the diagram. The puzzle is first to put them
together to form a cube, and then to make a wide variety of other
shapes. A full account has been given by Martin Gardner
(Scientific American, Sept. 1958).
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(d) Steinhaus’s dissected cube is also a 3 X 3 X 3 cube, but cut
into six pieces, three of 5 unit cubes, and three of 4 unit cubes
(Fig. 252). Thereare just two waysof fitting them together to form
a cube; the puzzle is a very difficult one. First use three pieces
to make a stepped pyramid like one of the units in (a) above.
There are two ways of doing this, with the same three pieces.
The completion of the cube is unique.

(e) A very interesting dissection puzzle takes its origin from
the arithmetical fact that 33443453 = 63. The problem of
dissecting the 6 X 6 X 6 cube to display this was solved some
years ago and the solution was published in Eureka, the maga-
zine of the Cambridge Archimedeans.t It makes a good puzzle.
There are eight pieces; the 3 X 3X 3 cube is uncut; there is a
2X2x2 cube, a block 2x1x1, another 3x2x1, and four
others. One of these is a 4x4x4 with a 2x1x1 block cut
from its corner; the others are shown in Fig. 253. The
assembly of the 4x 4 X 4 cube is obvious; five pieces make the

t An undergraduate mathematical society.
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5X 5 5 cube, and the whole set can be assembled to make the
6 X< 6 X 6 cube.

DG E
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4.9.2. Flexagons. These are polygons of flat card, hinged
together by their edges to form loops. They can be manipulated
by folding so as to display hidden faces. The first is rather dif-
ferent from the others. This is simply a chain of four squares
joined by opposite edges, and also creased along each diagonal,
The puzzle is to turn it inside out, so as to display the inner
faces of the squares, which should be coloured differently. There
are supposed to be a number of ways of doing this, but we have
only discovered one.

Fia. 254

The hexaflexagon family. A full account of these has been
given by R. F. Wheeler (Math. Gazette, 42 (1958), 1). We have
only space here to describe the most interesting original pair, and
the reader must be referred to Mr. Wheeler’s article or to articles
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in The Scientific American (May 1958)1 for an account of their

numerous and fascinating progeny. These two are both con-

structed from straight strips of paper—gum-strip used double,

with the gummed surfaces stuck together, serves very well.

The first (F), Fig. 255) needs ten equilateral triangles, the

second (F,) nineteen. In each case one triangle is used for stick-
Y B R Y B

R Y B R Y
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ing the ends of the chain together. The triangles should now
be coloured so as to display the flexagon’s interesting properties.
We adopt Mr. Wheeler’s ingenious system of colouring, and
his notation. Italic letters give the colours on the underside.
F, needs three primary colours, red, blue, and yellow. The sym-
bol A indicates the blank faces which are due to be stuck
together. When the strip has been creased on all lines and
coloured, we fold it in such a way as to conceal one of the
colours, by twisting it always in the same sense of rotation, and
finally join the ends. The result is a flat hexagon showing two
colours, one on each side. It can be ‘pinched’ and opened out
flat again to show a new colour; any two of the three colours
can be displayed.

F, gets interesting. The notation is as before, but now we
need three other colours; Mr. Wheeler suggests the secondary
colours: green, orange, and violet. The strip is first folded so
as to hide all the secondary colours, which reduces it to the
first case F}; this is then folded as before and stuck. It will now
be found that the secondary colours can only be displayed by
pinching and flexing in a position where the two corresponding

T Reprinted in Martin Gardner’s book ; see Bibliography.

Ey
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primary colours are visible; such a position can be flexed in two
different ways, one of which leads to the secondary colour and
the other goes round the primary cycle shown by F,. The
interested flexer can probably unravel further complications for
himself; if not, he should read Wheeler’s article.

The tetraflexagon family. It has recently been pointed out
by P. B. Chapman (Math. Gazette, 45 (Oct. 1961), no. 353) that
the same process can be carried out with squares instead of
hexagons. We shall describe only one member of the family.
Take a square of paper measuring four units on a side and mark
it out in unit squares. Cut out and remove the central 2x 2
square. Beginning at a corner, colour the remaining twelve
squares in order round the ‘frame’ according to the following
scheme: O(V), O(B), R(G), Y(@), Y(B), R(V), O(V), O(B), R(G),
Y(@), Y(B), B(V). (Letters in brackets denote colours on the
back.) Now fold three consecutive edges of the square inwards
in turn, all the same way. A rectangle 3 X 2 results. The final
corner has now to be folded the opposite way with a twist, so
as to bring all four squares of one colour on one side, and all
four squares of the other colour on the other. It can then be
flexed up or down about either axis of symmetry to reveal the
other colours. There will always be three thicknesses at each
corner. The reader is invited to experiment on the same lines
as with the hexaflexagons.

Historical note. Flexagons were first discovered and named
by A. H. Stone, a graduate of Cambridge University, while
working at Princeton in 1939. With J. W. Tukey and others
he worked out the full theory, but owing to the intervention
of war it was never published. Since then the mathematical
grapevine has carried flexagons around the world, and many
independent investigations have been made, but the credit
for their origination must go to Stone and his team. Stone also
shared in another contribution to less serious mathematics,
being a member of the team who first discovered a dissection of
a square into a set of unequal squares with integral sides. See,
for example, Steinhaus, Mathematical Snapshots, p. 7.
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MECHANICAL MODELS

5.1. MODELS IN MECHANICS

It is not intended in this book to give any account of the
apparatus available for teaching mechanics, which can be found
described in manufacturers’ catalogues and in textbooks.
Because of its associations with the science department, this
branch of mathematics has for long given an honoured place
to practical work. A caveat may, however, not be out of place
here: in the authors’ experience, the simpler the apparatus used
the better. The best aid to mechanical understanding is in-
telligent observation of everyday happenings. The window-
frame, the bicycle, the hanging picture, the railway train, and
the sailing-ship give more insight into the principles of mechanics,
and certainly more appreciation of the complexity of real pheno-
mena, and the great simplification brought about by abstrac-
tion, than any number of pulleys, strings, and trolleys designed
to show special laws. Models of pulley-systems are useful, but
more impressive is the real thing—a builder’s hoist, the tackles
on a main-sheet, or the Weston pulley in the goods-yard.

The models described in the following pages are worth making
for a different reason; either because they are paradoxical, and
provoke thought and discussion, or because they are of geo-
metrical interest and worth studying at close quarters.

5.1.1. The cone that runs uphill. This is a well-known
paradox, the principle of which is simple and the performance
surprising. A roller is made by uniting two congruent circular
cones by their bases. It is placed on two inclined tracks meeting
at an acute angle. This angle is sufficiently great for the axle of
the cone actually to descend while it appears to roll up the in-
cline (see Fig. 256). If « is the semivertical angle of each cone,
B the inclination of the tracks to the horizontal, and y the angle
between them (in a horizontal plane), the condition for this is
siny > sinBcot . A suitable value of y is easily found by trial.
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To make a model, the cone can be turned from solid wood,
or made hollow out of cardboard sectors which are glued to the
central circular disk. Alternatively two plastic funnels can be
cemented together by their rims, or two small conical flasks can
be cemented together by their bases. Flat plywood slats will
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serve for the inclines, standing on their edges, and joined at the
head and foot with plywood cross-pieces.

5.1.2. The centrifuge. This is an instrument widely used
today to increase the rate of sedimentation of suspensions; in
the form of the cream-separator it is tolerably familiar. A model
which demonstrates clearly the effects of acceleration on a sys-
tem can be made which is both simple and convincing. Fig. 257
shows such a model, made from wooden toy-wheels, metal strip,
and a bill-file. The two test tubes are filled with water; one
contains a cork and the other a small lead bob or a round pebble.
When the model is rotated, the pebble rises, as might be ex-
pected, but the cork sinks, which at first is hard to understand.
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5.1.3. A friction paradox. Two rollers are mounted on
perpendicular axles in different planes. An endless thread passes
round them and connects them, both directly and with a cross-
over, as shown in the diagram (Fig. 258). The instrument is
somewhat capricious, but the following phenomena can be
demonstrated with it.

______
Lo
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(a) One roller is rotated continuously in one direction. The
other starts in one direction, but if temporarily stopped
with the finger continues in the opposite direction.

(b) One roller is rotated to and fro through a small angle.
The other roller rotates continuously in the same direc-
tion.

The apparatus shows that dynamical frietion is less than
statical, but a full explanation is complicated, if indeed it is
possible, and certainly involves consideration of the elasticity
of the connecting belt.

5.1.4. Non-circular rollers. There is only one curve of
constant radius, the circle. An efficient wheel, mounted on a
fixed axle, must therefore be circular. But it is not generally
realized that the circle is not the only curve with constant
width. In fact there are infinitely many such curves, and a
wide variety of forms is possible for an efficient roller.

A simple example can be constructed by taking an equi-
lateral triangle and describing on each side an arc whose centre
is at the opposite vertex (Fig. 259). It is easily seen that the
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width (defined as the distance between parallel tangents) is
constant and equal to the radius of the arcs. This curve has
pornts de rebroussement where the gradient is discontinuous, but
this is easily avoided as shown in the second diagram: all the
arcs are centred at the vertices of the triangle.

\_/U
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X,

More generally, a curve of this type can be constructed from
any triangle 4 BC as follows (see Fig. 260).
Draw an arc o, with centre 4 and radius k—a

and s Oy ’ A ' k—b—c.
Then draw ,, B, ’ B . k—b,
»  PBo . B . k—c—a,
’s Y1 ’ C ’s k-c,
v Vo . C . k—a—b,

where k is arbitrary, but greater than the sum of any two sides
of the triangle.
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It is evident, from the fact that
radius of «,+radius of a, = radius of B, -+radius of 8,
= radius of y,+radius of y,

that these arcs form a closed curve with constant width
2(k—s) = d, say. Further, the total length of this curve is

&

€>
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the same as that of a circle of diameter d. For the length of

«, and «, together is Ad, and so on; thus the total length is
(A+B+C)d = =d.

This last property is true for all curves of constant width.

Instead of the triangle A BC we may take any odd number
of vertices forming a convex polygon; Fig. 261 shows the con-
struction for five vertices A BCDE, joined by a pentagon.

It is interesting to make a model of some of these rollers.
Cut the curves out of plywood in congruent pairs and mount
them on axles to which they are rigidly bolted. A flat board
resting on the rollers can then be rolled along quite level in

its own plane, but the rollers themselves move in a curiously
irregular manner.
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There is a three-dimensional analogue in the form of a ‘tetra-
hedron’ bounded by triangular spherical caps and toroidal strips,
but it is difficult to make.

5.1.5. Parabola and catenary. These curves are of fre-
quent occurrence in everyday life, and a model can easily be set
up to show the difference between them. The parabola appears
in the path of a cricket ball, the shape of the suspension-bridge
cable, and the parabolic reflector; the catenary is seen in the

(b)
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hanging chain, telegraph wire or electric transmission line, and
in the curve of a sail, or a cylindrical soap-film stretched between
two plane circular ends.

In the case of the catenary, the load is distributed uniformly
along the length of the chain. For the suspension bridge, how-
ever, the ideal arrangement is to have the uniform horizontal
load supported evenly by the vertical ties. It is easy to show
that in this case the points of attachment of these ties to the
hanging chain lie on a parabola.

Suppose there is a central tie 4, B, (Fig..262(a)), and let
A, B,, A, B,, etc., be vertical ties at equal horizontal distances
h. Draw the reciprocal diagram, Fig. 262 (b). The vertical steps
R, R, R,R, R,Q,, @, Q,,... are all equal, being equal to the
vertical loads in the ties. Thus the slopes of PQ,, PQ,, etc.,
which are the slopes of B, B,, B, B,, etc., are in arithmetic

progression: A~
tan NPQ, = k(r—3%).
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Therefore we have

yr—yr—l = kh(r—%),

Y1—Yo = 1kh.
Therefore, by addition, y,—y, = %}-b Z (2r—1) = % re,
Thus the points B, lie on the parabola y = kx?/2h, with vertex
at B,.

The heavy snake-like chains used for key-chains and watch-
chains make excellent catenaries; a heavy cord can be used,
but is apt not to be uniformly flexible, and a chain of small
links is better. A suspension bridge can be made for comparison
by hanging a heavy horizontal rod by fine threads from a similar
cord or chain. This needs accurate work in measuring and
fastening the threads, but is very effective if well done. Mark
off a series of equal intervals on the rod, beginning at the centre
and working outwards in each direction. Attach a thread to
the rod at each mark. If [ is the length of the centre thread,
the others should be, proceeding in order from the centre,
I+k.12 1+k.22 [+ k.32 etc., where k is any convenient length.
(For a 3-foot span, with threads every 1} inches, k¥ = J; inch
gives a reasonable sag of 14-4 inches.) At exactly these distances
along the threads, tie a short cross-bar (a short pin will serve).
Hang up the rod by the end threads and adjust a fine chain so
that it will hang freely in a catenary in such a way that the
two end threads and the centre thread could just be hung from
it without disturbing it. Next, shorten the chain so that the
centre rises about 0-6 inch with the above measurements (in
general, 4h3/15a2, where h = the sag and a = the span); pull
down the centre link and hang the centre thread from it. Now
raise the other threads in turn, keeping them vertical, and slip
the pins through the appropriate links in the chain so that they
hang from them. The chain should by this means be pulled
out into the parabolic form. Minor adjustments can be made
to trim the final curve. An easier method is to hang equal
weights at equal horizontal distances along a hanging chain.
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If a parabola is cut out of a card and rolled along a line, the
path of its focus is a catenary. This cannot be seen behind the
parabola, so it is best to cut the parabola from celluloid or
‘Perspex’ and mark the focus by a spot or a small hole.

The paraboloid of revolution, obtained by revolving the para-
bola about its axis, is the surface taken up by a fluid rotating
under gravity. If a torch-bulb is hung at the focus, the property
of the parabolic reflector can
be shown and the emergent
parallel beam of light can be
seen in a darkened room. The
best results are obtained with
mercury, but caution and a slow
start are recommended, so that
one can be sure that every-
thing is accurately centred
before the situation gets out of Fic. 263
control. A gramophone turn-
table can be used to rotate the beaker or other vessel contain-
ing the fluid,T but it must be rigidly and centrally fixed to it.

The catenoid, i.e. the surface formed by rotating a catenary
about its directrix, is a minimal surface, having minimum area
within a given boundary. This is the form taken up by a soap-
film spanning two coaxial circular disks. Other minimal-surface
problems can be demonstrated with soap-films; a full account
is given in What is Mathematics? by Courant and Robbins,
chap. vii, § 11.

5.1.6. Cycloid. The cycloid is the path traced out by a point
on the circumference of a circle which rolls on a straight line.
It can be demonstrated very easily from the definition. Take
a wooden slat about a foot long and }-inch square and glue a
card to the back by its lower edge. A circular disk can now
be rolled down the slat and the cycloid traced on the card
(Fig. 263).

The cycloid has two famous mechanical properties. Christian
Huygens discovered that it is a true tautochrone; that is to say

t A tin of golden syrup will serve.




216 MECHANICAL MODELS \%

that a particle moving under gravity on a cycloid, with its arch
downwards and cusps upwards, will execute exact simple har-
monic motion, and therefore describe paths of different ampli-
tude in equal times. Jacques Bernoulli proved that in this same
position it is also a brachistochrone; i.e. it is the path along which
a particle can travel from one point (the cusp) to a lower point
under gravity in the shortest possible time.

These properties can both be demonstrated by constructing
a cycloidal track on which a ball can roll. This is most easily
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set up by cutting two plywood sheets and spacing them with
washers (see Fig. 264). A straight incline can be made for
comparison; the time taken for a ball to travel from 4 to B
along the cycloid will be less than along the straight line 4 B.

5.2. MODELS IN STATISTICS

The chief adjuncts to a study of statistics are packs of cards,
sets of dice, coins, to say nothing of roulette wheels, football
pools, racing odds, totalizators, and other apparatus providing
the gambler with his thrills and the bookmaker with his money.
Many statistical experiments require the tossing of large numbers
of coins, and for this purpose mechanical assistance is useful.

5.2.1. A simple coin-tossing machine. This consists of
a box to contain the coins, roomy enough for the number
required to lie on the bottom without overlapping, and deep
enough for them not to jump out when tossed. The top is open
for observations; if a hinged lid is provided, the box can be
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shallower. The bottom of the box is perforated with a large
number of holes. A movable board beneath carries pins on its
upper surface which project through the holes when the board
is raised and strike the coins on the under side. This board is
pivoted amidships, so that a blow on the other end raises it
and tosses the coins (see Fig. 265).

%
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5.2.2. The Galton Quincunx. Suppose a steel ball rolls
down a line of greatest slope of an inclined board, and strikes
a pin in its path. It is not difficult to imagine conditions in
which it has an equal chance of rebounding to the left or right
of the pin. If two pins are now placed on a horizontal line lower
down the board and the angle of slope is correctly adjusted,
the ball will hit one or other of them after it rebounds from
the first pin. Again it may happen that for small variations
of its path it has equal chances of falling to left or right of
these pins.

The probabilities therefore of falling to the left of both,
between them, or to the right of both, should be in the pro-
portion 1:2:1. The process can be continued and it is plain
that the probabilities of a ball passing between the different
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pins of a row are proportional to the numbers in Pascal’s
Triangle:

1 3 3 1
1 4 6 4 1

reservoir for shot

Fic. 266

The distribution of probabilities along the nth row is thus
proportional to the coefficients in (1-4¢)*. Such a distribution
is called a binomial distribution.

A board of this kind is called a Galton Quincunx, after the
name of its inventor;{ quincunx is the Latin name for the 5 (:-:)
on a die, or any similar pattern: for example, trees in an
orchard. An example is shown in Fig. 266. Steel balls or lead
shot may be used, and the partitions at the base are of such a
height that two balls cannot rest on one another. A glass plate
lies on top to prevent this. The board is first tilted so that the

1 Francis Galton, Natural Inheritance, 1889.
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balls run into the reservoir shown at the top of the diagram,
the gate being removed. The gate is then replaced and the board
tilted like a bagatelle board. When the gate is removed the balls
roll down and are deflected by the pins into the compartments
at the bottom. If the angle is suitably adjusted, the numbers in
the compartments can be made to approximate closely to the
binomial distribution. For large numbers of both shot and rows
of pins this distribution approximates to the standard error
curve y = ke—*"%’ where k and s are constants. The curve
formed by the columns of shot in the compartments should
therefore give a rough idea of its shape.

5.2.3. Statistical evaluation of =. If a stick of length 1
is thrown at random onto a surface ruled with parallel lines
whose distance apart is a (> I), then the probability of its
crossing a line is 2l/ma. For if its centre falls at a distance z
from a line, and it makes an angle § with the direction of the
lines, it will cross a line if x << 4Isiné.

Therefore for this value of 6, assuming all values of x from
0 to }a equally likely, the probability that it crosses a line is
Isinf/a. Hence the total probability, averaging over all 8, is

flsmedo/ d@:ifsinede=§£.
a Ta ™a
0 0

0
[We assume ! < a, otherwise for certain values of 6 the result
is a certainty and the average will be different.] In practice it
is best to choose [ about $a so that the probability is about 3.
To carry out the experiment, matches can be thrown onto paper
ruled with equidistant lines, or pencils onto a boarded floor, if
the lengths are suitable. Results within about 5 per cent. can
be expected from a few hundred trials.
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5.3. PLANE LINKAGES

There is something very attractive about the motion of a
linkage of rods. Who, for example, is not fascinated by the sight
of the connecting-rods of a locomotive, especially one adorned
with an external Walschaerts or Stephenson valve-gear? Not
only is the study of link-motion a useful and important part of
kinematics, it also introduces several interesting loci and enve-
lopes and brings in geometrical constructions and analytical
geometry.

Linkages can be constructed in several ways. The simplest is
to cut strips from cardboard (about 10-sheet), and join them
with paper-fasteners, or drawing-pins with points uppermost.
A more permanent model can be made from steel strapping—
the sort that is put round crates and is usually thrown away.
This can be drilled and joined with metal eyelets, stationers’ or
shoemakers’. For exhibition purposes the links can be made
from metal strip, joined with bolts and stop-nuts, lacquered,
and mounted permanently on a board. If two or more links
are to be equal in length, drill them simultaneously.

5.3.1. Approximate straight-line motions. Foremost in
historic interest is the problem of producing straight-line motion
by linkwork. Before the days of straight guides it was difficult
to maintain true linear motion, e.g. in the pistons of beam
engines. The earliest attempts produced a motion which was
only approximately linear, but they were in their day a great
step forward. James Watt is said to have been more proud of
his link-motion, which he discovered in 1784, than of his steam-
engine.

The approximate straight-line motions have this in common,
that they are all three-bar linkages. Two equal bars hinged to
fixed points are hinged to the ends of a third bar. A point P
carried by this bar generates the approximate straight line.
In fact it generates a sextic curve, which may be very nearly
straight in the neighbourhood of an inflexion. It is necessary
to have at least five bars for exact straight-line motion (Hart
and Kempe, 1877).
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5.3.1 (a). The first motion is James Watt’s (1784), shown in
Fig. 267. Bars AC and DB are equal, and P is the mid-point
of CD. The path of P approximates more closely to a straight
line as the bars AC and BD are lengthened. If

AB=CD
= v2AC = V2 BD,

P describes Bernoulli’s lemniscate.

Fia. 267
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5.3.1 (b). T'chebycheff’s motion (1850) is shown in Fig. 268.
Here AC = DB = 5a, AB = 4a, CD = 2a, and P is the mid-
point of CD. The height of P above A B is 4a both when CD is
horizontal and also in the two positions when CD is vertical.

5.3.1 (c). Roberts’s motion (1860) is a still closer approxima-
tion (Fig. 269). Here AC = BD = CP = PD,and CD = }A4B.
P is carried by the plate. P lies on A B again in the central and
the two extreme positions. .4 C/CD must exceed }(v33—1).

5.3.2. Exact straight-line motion. The first successful
solution of the problem of exact linear motion was put forward
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by Peaucellier, an officer in the French Army, in 1864.f The
linkwork he used was afterwards employed to control the pumps
in the ventilation system for the Houses of Parliament.

Kempe, a London barrister, who also succeeded in solving
the problem, published a book in 1877 with the alluring title
How to draw a Straight Line, in which the following linkages
are described.

5.3.2 (a). Peaucellier’s linkage, which is much the most
efficient in practice, is essentially an inversor, and can be used
for many other purposes. It has two forms (see Fig. 270).
OAPB, QARB are two rhombi of hinged rods with a common
diagonal AB. OQRP are therefore collinear. It can be proved
without difficulty by Pythagoras’s Theorem that

0Q.PQ = 0Q.OR = 0OA%2— AQ? = constant.

Hence if O is fixed, Q and R describe inverse curves, and if @ is
fixed O and P describe inverse curves (with an imaginary radius
of inversion).

Now the inverse of a circle with respect to a point on its cir-
cumference is a straight line. Therefore if we add another link
of any length » connecting @ with a point C fixed in the plane,
and fix O so that OC = r, @ will describe part of a circle through
0, and R will describe a straight line (Fig. 271). Alternatively
we could fix @ and make O describe a circle through @; P would
then trace out a line.

5.3.2 (b). Another linkage of great importance is the ‘crossed
parallelogram’ 4 BCD (Fig.272) in which A B= CD, AD = BC.
This has many uses, including that of an inversor, in which form
it was used by Hart in 1874 to solve the problem of line motion.
If O, P, @ are three fixed points on the rods AB, AD, BC such
that OPQ lie on a line paralle] to AC, then this will be true in
every position of the linkage and OP.0Q = BQ.QC—0A.0OB
which is constant. Therefore once again, if O is fixed, we have a
means of producing inverse curves, but this time with only four
bars instead of six. One extra bar suffices to make P move on

t+ Mr. Michael Goldberg has pointed out that strictly priority could be
claimed by Sarrus, whose three-dimensional solution (5.4.4) dates from 1863.
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a circle through O, so that @ describes a straight line. This is
the smallest number of bars for a linkage giving line-motion.

We shall now describe another five-bar linkage which solves
the problem; this is also due to Hart.

Fic. 272

5.3.2 (c). The bars 4B, CD (Fig. 273) are equal, as also are
BP, DP. Points E, F are taken on AB, CD so that BE = DF

and BE.BA — BP2

These points E, F are joined by a rod of length equal to BP or
DP, and A, C are fixed in the plane so that AC = AB = CD.
Then P traces out the perpendicular bisector of AC. The proof
of this is an interesting exercise in similar triangles.

5.3.2 (d). Two other line-motion linkages based on the Peau-
cellier and Hart inversors, but involving quite a different prin-
ciple, are due to Kempe (1875). In the first (Fig. 274), 4 and C
are fixed to the plane and AOBC is a rhombus. The rods R4,
RB, RQ are equal and P is chosen to make the kites OARB,
RQPB similar; i.e. PQ = PB and BP.BO = BR? Then it

can be proved without difficulty that QQ\C is a right angle, so
that @ describes a straight line perpendicular to 4AC.

The second linkage (Fig. 275) uses two similar crossed paral-
lelograms in the same way as the first uses two similar kites.
These are A BCD, ADEF in the figure, where AB = CD = AQ,

VA
AD — BC = EF, AF — DE —= DA DC. Then QAD — BAD
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in all positions. If therefore we fix 4 and D and attach P by
equalrods to B and @, P must move along the line 4D produced.
These straight-line linkages are illustrated in Plate 4 b.

5.3.3 Linkages for drawing curves. It was proved by
Kempe in 1875 that any algebraic curve can be described by a
linkage. Even for so simple a curve as a conic the linkage is
quite complicated, with nine bars: the motion of a suitable point
on a crossed parallelogram is inverted with a Peaucellier cell.
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There are, however, certain quartic curves for which the link-
work is remarkably simple.

5.3.3 (a). Bernoulli’s lemniscate. The linkwork invented by
James Watt will draw the lemniscate when it forms a crossed
parallelogram with the long bar v2 times as long as the shorter
bars (see 5.3.1 (a) above and Fig. 276). Alternatively, the lemni-
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scate can be described by the point P (Fig. 277) on a kite A BCD
in which A B = v2 BC.

5.3.3 (b). Cassinian oval. If in this last figure a Peaucellier
cell is added as shown in Fig. 278, the points ¢, @’ will describe
a Cassinian oval with foci at 4 and at the image of 4 in B.

5.3.3 (c). Limagon. In Fig. 275, add a bar AD, and fix E, F
instead of 4, D. Then the locus of Bis a limagon. If, in addition,
EC = 2B(, then the locus is a cardioid (shown in Fig. 279).



(227)

278

Fic.

Fia. 279



228 MECHANICAL MODELS \'

The limagons can however be drawn more simply if a
sliding rod is used, as shown in Fig. 280. The rod BA P slides
through a guide pivoted at B, while 4 moves on a circle with
centre 0. If the complete curve is required, an arrangement
similar to that shown in Fig. 17 must be adopted at B. Since the
limagon is the inverse of a conic with respect to a focus, this gives
an alternative method of generating a conic by a linkage, by
fixing a Peaucellier cell across B and P.

Fig. 280

5.3.4. Trisectionoftheangle. If,inthelinkage of Fig. 280, we

take O4 = AP = a, then if PO is produced to C, B/BC = 3BP/0\.
Thus if O, B are connected by a rod of length a and removed
from the plane, we have an instrument with which to solve the
trisection problem. This is Pascal’s Trisector. It is better for
this purpose to make the end B of the rod OB run in a slot in
the rod PAB. The diagram (Fig. 281) shows the instrument in
use for trisecting a given angle BOC.

There are many other instruments for trisection. The simplest
(apart from the marked straight-edge) is probably the T-square.
This consists of two rods joined rigidly together at right angles;
the shorter (M LN, Fig. 282) is bisected at the joint. This requires
a preliminary construction. If BOC is the angle to be trisected,
draw a line XY parallel to OB at a distance equal to LN or LM.
This can itself be done with the aid of the square, by laying K L
along OB, marking two positions of M, and joining them.
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Then place the square so that KL passes through O, M lies
on OC, and N on XY. ON and OL are then the angle-
trisectors.

The Tomahawk, which is the T-square with the semicircle
with centre N and radius N L rigidly attached to it, can be used
directly without previously drawing the line XY (Fig. 282, r.).

The principle of similar crossed parallelograms employed in
Kempe’s linkage (Fig. 275) can be extended to make an angle-
trisector. For this we need three similar crossed parallelograms,
the long arm of each being a short arm of its successor. The
resulting apparatus is shown in Fig. 283. This principle can
obviously be extended to the construction of an apparatus for
the division of an angle into any given number of parts.

5.3.5. The crossed parallelogram. The motion of a
crossed parallelogram provides in itself an introduction to a
variety of geometrical topics. Suppose first of all we fix one of
the short bars AB (Fig. 284). Since the points C, D are now
rotating about B and A respectively, the tnstantaneous centre
for the motion of the rod CD is the point P, the intersection of
BC and AD. Evidently AP+ PB = CP+PD = AD or BC.
Thus the locus of P, considered as a point of space, is the ellipse
with A, B as foci and major axis equal to AD; whereas its locus,
considered as a point attached to the rod CD, is the equal ellipse
with C, D as foci. Furthermore, since the tangent to an ellipse
at any point is equally inclined to the focal distances, these two
ellipses touch at P in every position of the rods. The motion of
CD is therefore generated by the rolling of the second ellipse
on the first, which remains fixed. These are the body-centrode
and the space-centrode respectively for the motion of CD.

Again, if the angular velocity of AD is w, the angular velocity

of CDis w % in the same sense, and the rate of change of the

angle CDA is w%' Now let us replace the rods AB, CD by
solid elliptical disks. Retain the link BC, and mount 4 and D on
axles, so obtaining a pair of elliptical gears, which are held con-

stantly in mesh by the link BC. The velocity ratio of the pair is
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AP/PD, which varies from lie to l:e and back again in the
course of a revolution, e being the eccentricity of either ellipse.
The gear thus provides a ‘quick-return’ mechanism which finds
application in a number of machines.

To make a model, the ellipses can be cut from wooden blocks
and should have their rims covered with cloth or felt or strips of
corrugated cardboard or metal to prevent slipping. The link
BC( is essential to ensure contact.

It is instructive to consider the motion of this link itself. Its
instantaneous centre is the meet ¢ of AB and CD produced.
Since Q4 ~ QD = QC ~ QB = AB, the locus of @, regarded
as a point of space, is a hyperbola with foci 4 and D, and regarded
as a point of the rod BC, a hyperbola with foci B and C. These
hyperbolas are the centrodes for the motion of BC, which is
generated by the rolling of the second hyperbola, carrying the
rod with it, on the first (Fig. 285).

5.3.6. Miscellaneous linkages. We include here a few
additional linkages of interest. The first four are based on the
properties of the parallelogram.

5.3.6 (a). The pantograph. This familiar mechanism is shown
in Fig. 286. The three points O, T', P are collinear. RSTU is
a parallelogram, and PT/T0O = PU|UR = constant. If any
one of the three points O, T', P is kept fixed, the other two
describe similar curves. The instrument is used for enlarging or
reducing diagrams, and is obtainable from good stationers.

5.3.6 (b). Dividing machine. This is an extension of the
pantograph (Fig. 287), and is used for dividing a segment OP
into equal parts. Extended indefinitely, it becomes

5.3.6 (c). The ‘lazy tongs’ (Fig. 288).

5.3.6 (d). Roberval’s balance (Fig. 289). This is the familiar
letter-weighing machine, or grocer’s scales. X, Y are fixed pivots;
AB = CD = XY, AX = XC = BY =YD.

The rods AB, CD remain vertical and equidistant from XY,
their vertical velocities are always equal and opposite. Con-
sequently, by the principle of zero activity, equal loads will
balance, no matter where they are placed on the scale-pans.
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5.3.6 (¢). The next two linkages (Figs. 290 and 291) are com-
binations of double kites to produce parallel motion and sliding
motion, and are due to Kempe.

In each case the points 4, B, C are fixed, and the larger kites
are congruent and similar to the smaller ones, which are also

congruent.
In the first figure

AC = AH = DF = DI,
GC =Gl = GH = GF;
BC = BI = HE = EF;

and CB.CA = CG>
The rod DEF remains parallel to A BC, and FC is always
perpendicular to A BC.

In the second figure
AC = AH = DF = DI;
GC=GJ =GH =Gl = GK = GF;
BC = BJ = EF = EK,
and CB.CA = CG=.

HGK and IGJ are rigid rods hinged at their mid-points. The
rod DEF always moves in the continuation of the line 4 BC.

5.4. LINKAGES IN THREE DIMENSIONS

5.4.1. Hooke’s universal joint. This is a very familiar
linkage for connecting two rotating shafts which are not quite
in the same line.

A model can be easily made of wire and a circular disk in
the form shown in Fig. 292. The shafts 4 and D carry rods
BB, CC’, rigidly attached to them at right angles. These
rods move in hinges attached to the central disk, lying along
perpendicular diameters, one on each side.

The motion can also be illustrated even more simply as fol-
lows: take an L-shaped piece of cardboard (Fig. 293) and crease
it in opposite directions as shown at the corner. The inner edges
of portions a and b then represent the two shafts.
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5.4.2. ‘Inversion’ of Hooke’s joint. This connects con-
tinuous rotary motion with oscillatory rotary motion. The
diagram (Fig. 294) explains the joint. 4 bears an arc of angle «
and radius r fixed at right angles to it; D bears a rigid rod OC
of length r also fixed to it at right angles; their ends are hinged
as shown to a quadrant of a circle of the same radius r; all the
hinge-lines pass through O, so that the mechanism is a particular
case of what is called a spheric chain. The angle ¢ oscillates
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between 4« and —a as A rotates continuously. A wire model
is easily made.

5.4.3. Spheric chains. The above joints are described by
R. H. Macmillan (Math. Gazette, 26 (1942), 5), where the general
spheric chain is discussed in detail. A model of it can be made by
constructing a polyhedral angle out of thin card; as the angle is
deformed by the plane faces hinging about the flexible edges,
the outer edges of the angle describe the motion of the general
spheric chain. This is one of the cases known in which a closed
chain of less than seven links can move. The general chain of
six links or less in space is rigid. We proceed to discuss a few
of the exceptions.

5.4.4. Sarrus’s motion. This is a chain of six bars in which
groups of three hinges are parallel or concurrent. The diagrams
(Figs. 295 (a), (b), (c)) show examples made from flat card. In
Fig. 295 (a) the hinges ac, cd, db are parallel, and so are hinges
bf, fe, ea, in a perpendicular direction. In the motion, a and b
remain parallel, and XY is always perpendicular to them.

In Fig. 295 (b) the hinges ac, cd, db meet at P and bf, fe, ea at Q.
a and b now rotate about P¢. In Fig. 295 (c) the hinges ac, cd, db
are parallel, and the other three meet at ). a moves relative to
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b by rotating about a line through ¢ parallel to the hinges
ac, cd, db. R. A. Fairthorne (Math. Gazette, 28 (1944), 161), to
whom the description of the model of Hooke’s joint is due, has
pointed out that these linkages ‘seem to be unknown to engineers,
but have been used for centuries by bellows makers, tailors, and
manufacturers of cardboard boxes’.
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5.4.5. Skew isogram. This was discovered by Dr. G. T.
Bennett (Engineering, 4 Dec. 1903, p. 777). The lengths of al-
ternate links are equal, and the inclinations of the hinges are
related by an equation.

We shall give a few special cases in the form of a table, with
some additional five-bar chains due to Goldberg (Trans. Am.
Soc. Mech. Eng. 65 (1943), 649-61).

Author No. of bars Length and twist of links
2a a 20 a
4
Bennett { 90° 30° 90° 30°
4 av2 a av2 a
”? 90° 45° 90° 45°
4 a a a a
” 60° 120° 60° 120°
2a 2a¢ 2a a a
1 [
Goldberg ? ‘ 90° 60° 90° 30° 30°
5 a(l+~2) 2a av2 a 2a
” 75° 90° 45° 30° 90°

To these must be added the ring of six tetrahedra (3.11) which
has a limited mobility. The tetrahedra need not be regular, but
must be congruent, with their opposite hinge-edges at right
angles. The ring of eight or more tetrahedra will rotate like
a smoke-ring.

To construct these chains, it is most convenient to use card-
board tetrahedra for links. To construct a link of length I and
twist 6, proceed as follows.

Draw a rectangle with diagonals of length A, the length of a
hinge, and containing an angle . From a corner of the rectangle
drop a perpendicular on to a diagonal, thus dividing it into two
parts p and g, the perpendicular being of length x (see Fig. 296).
Then the faces of the tetrahedron are triangles whose altitude y
is of length ,/(12+x2), and divides the base into segments p and g.
The net of the tetrahedron is shown in Fig. 296.

A further special six-bar chain was discovered by Bricard.
It has 6 = 90° throughout, and the lengths of the links are



240 MECHANICAL MODELS

a,xz,b,y,c, z where a®-+b24+c? = x%-}+y?+22 Integral solutions

of these equations can be constructed from the identities:

421 524202 — 821 1121162 — 4211321162
— 424 821192
= 212;
9241224202 — 12241524162 = 252,
Further examples and references will be found in ‘The Free-

dom of Linkages’, Math. Gazette, 34 (1950), 37, by R. H.
Macmillan.

5.5. MACHINES FOR DrRAWING CURVES

5.5.1. Besides the linkages we have discussed, there are other
machines designed specially for drawing certain curves. The
commonest of these is the ellipsograph, or Trammel of Archi-
medes, which is used in many drawing offices for constructing
ellipses. There are various types in use, but the one which illus-
trates the principle most clearly is shown diagrammatically in
Fig. 297. Four triangular cheek-pieces are bolted firmly to a
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base-plate which rests on the paper. They form the walls of
two slots at right angles in which the sliders 4 and B can run.
PAB is a slotted arm which can be screwed to the sliders at 4
and B in such a way that it is free to rotate on the slider, but not
to slip along the slot A B. The sliders must be longer than the
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width of the slots at O to ensure free travel across the opening.

If Ox/‘l\B =0, BP =a, AP = b, the coordinates of P are
(acosf, bsin f) and the locus of P is the ellipse with axes 2a and
2b. By adjusting the screws, ellipses of different sizes can be
drawn by a tracing point at P.

The same apparatus can be used to demonstrate a two-to-one
gear ratio, using pins and slots only. The centre O of the base-
plate is now fixed, and also the mid-point C of the segment A B
of the sliding arm. The distance OC is constant, being equal to
3AB. As the arm is rotated about C, the plate revolves in the
opposite sense at one-half the rate. Again, if AB is held fixed
and the arm CO is rotated, driving the plate over the sliding
contacts at 4 and B, the fixed point P will cut out an ellipse
on any sheet attached to the base plate. This is the principle
of Oldham’s Coupling, by means of which ellipses can be cut
on a lathe.

5.5.2. The Archimedean spiral. Another curve which can
be drawn with a simple mechanism is the Archimedean spiral
r = af. A diagram of the mechanism is shown in Fig. 298.

/K
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A is a toothed wheel fixed to the base-plate B. The moving
carriage C is free to rotate about the axis of A and carries two
pulleys Dand E. On the axle of the pulley D, and connected to it,
is a small pinion G which meshes with the fixed gear-wheel 4.
A thread passes round the pulleys D and E and is attached to
the tracing-point P which moves in the slot S. Evidently the
distance moved by P along the slot is proportional to the angle
through which the carriage turns, and the law of the spiral is
satisfied.



242 MECHANICAL MODELS \%

5.5.3. Lissajous’s figures. This is the name given to the
family of curves which are described by a point whose motion is
the resultant of two simple harmonic motions in perpendicular
directions. In general the motions have different periods and
amplitudes and a great variety of patterns results. If the periods
are equal we obtain various kinds of ellipse; if one period is twice
the other, various quartics, with the lemniscate of Bernoulli and
the repeated arc of a parabola as special cases.

The curves can be drawn by combining pendulum motions by
several different methods, of which Blackburne’s pendulum is the
example most often given. In this the bob is suspended from
the lowest point of three strings knotted in the form of a Y. The
upper strings are attached to fixed points. It is clear that the
length of the pendulum for motion in the plane of the Y is that
of the lower string. For motion perpendicular to this plane the
complete Y osciliates about the points of suspension. It is diffi-
cult to utilize this to draw a curve on paper, and the range of
ratios of the two periods is limited.

For drawing purposes a better method is illustrated in Fig.
299. Two long arms are hinged together and the pen or pencil
passes through the centre of the hinge. The far ends of the arms
rest on the top of two rods which swing as pendulums in perpen-
dicular planes. The angle between the arms varies, and there is
a certain amount of coupling between the motions of the two
pendulums, but if the arms are long this is slight and a good
approximation to the true Lissajous’s figures can be obtained.

The hinge can be a collar of wood, shaped rather like half
a small cotton-reel. The pencil must fit tightly in the drill-hole,
but the arms must be an easy fit on the outside of the collar.
A wooden ring that just fits over the core of the collar can then
be glued in place to hold the arms in position. Alternatively,
a short length of metal tube can be used, threaded on the out-
side, with the arms held in place by lock-nuts.

A few curves drawn with a machine of this type are shown in
Fig. 300. The ratio given is that of the periods of the two
pendulums, and the angle is the approximate initial phase differ-
ence between them. Notice in the second figure how the slight
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difference in frequency gradually alters the phase difference, so
that the ellipse is reduced ultimately to a straight line. In dia-
grams 3 and 5, where the initial phase difference is only a few
degrees, notice how the coupling between the motions tends
to bring them exactly into phase, the loops becoming cusps.
It is these slow changes which make the patterns interesting
and produce the ‘envelopes’ which are their most noticeable
feature.

The cathode-ray oscillograph also provides a simple method
of drawing these curves. The potential difference causing the
x-displacement can be derived from 50-cycle mains or a valve-
maintained tuning-fork, with a suitable filter to render it sinu-
soidal. The potential difference for the y-displacement can be
obtained from a beat frequency oscillator, which will have a
wide range of frequency. The slow changes are easily observed,
as the frequencies will not normally be exact multiples.

5.5.4. The harmonograph. This machine is an extension
of that last described, which combines the motions of two conzical
pendulums. As it is possible to fix these so that they move in
perpendicular planes, it is also possible to use this machine to
draw Lissajous’s figures as a special case. It is however capable
of a very wide variety of designs; in fact two patterns drawn
by the machine are seldom alike.

The harmonograph was a popular diversion in Victorian
drawing-rooms, since when it has suffered a decline and is rarely
seen today. The construction of a good machine entails a con-
siderable amount of labour and skill, but the effort will be well
repaid, and it makes a fascinating contribution to any mathe-
matical exhibition that may be planned.

To judge from occasional remarks in the literature, the Vic-
torian models were light enough to be placed on a table, and seem
to have combined the pendulums one below the other, the second
being attached to the bob of the first, and the pen to the lowest
bob. What sort of pen was used and how it made contact in all
positions with a flat sheet of paper the writer has been unable to
discover, but there is no doubt that it produced beautiful and
continuous curves. The model described here is of a different
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3. Ratio 2:1, 0°. 4. Ratio 2:1, 90°.
5. Ratio 3:2, 0°. 6. Ratio 3:2, 45°.

The phase angles give the fraction of the more rapid period which elapses
between the times when the pendulums are at the ends of their paths.
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type and much more robust. If the motions are not to decay too
rapidly a light pen arm and heavy weights are essential; pendu-
lums about 3 or 4 feet long are also to be recommended.
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The principle adopted in this machine is to apply the conical
movements separately to the pen and to the table carrying the
paper; the pen-arm can then be mounted so as to permit the pen
to move up and down, and thus to maintain contact in all
positions relative to the table.

Fig. 301 shows a side elevation of the machine. The whole is
mounted on a wooden baulk which is securely clamped to rigid
supports. (The machine is very sensitive to slight tremors and
must be kept as free from vibration as possible.) Two holes
about 2-inch diameter and about 1 ft. 6 in. apart are drilled in
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this baulk. This was done in the model constructed under the
writers’ direction in order to allow 8-inch amplitude of swing for
each pendulum, but in practice the maximum amplitude could
not be used owing to the difficulty of finding a pen which would
work well at high angles of inclination, so that the distance apart
could be reduced to 1 foot with advantage. Brass rings 24 inches
in diameter externally and 2 inches internally were then sunk
into the baulk (as shown in the diagram in solid black) to bear

/

the steel knife-edges which were bolted to each. This isring 4 in
Fig. 302. A floating ring B of slightly smaller diameter, grooved
to half its depth along one diameter, and again in a similar
manner on the opposite side along a perpendicular diameter,
rested on these knife-edges, and carried in turn the knife-edges
attached to the pendulum. These were inserted in a steel collar
C fixed to the brass pendulum rod D. The pendulums, thus
supported on gimbals, were free to oscillate in any vertical plane.
They were 4 ft. 3 in. long, 3 ft. 6 in. below the knife-edges and
9inches above, but as this raised the table rather high for comfort
the measurements could be reduced. They carried adjustable
lead weights, about 10 lb. each, cast in cocoa tins round a central
brass tube. These were supported on the pendulums by steel
collars with set-screws and could be quickly adjusted to any
depth below the knife-edges.

Both pendulums were provided with wooden collars at the
top, one of which supported the drawing table, 8 inches square,
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and the other the pen-arm mounting. A glass plate was clamped
to the table to give a smooth writing-surface, and the paper
stretched over it with clips. The pen-arm mounting is shown in
Fig. 303. The pen-arm was made of angle-section curtain rod
laid flat to prevent whipping from side to side, mounted on a
horizontal axle which was free to revolve on conical pivots.
These were fixed in a brass bridge, also made of curtain rod,

pen arm

re—
::>> brass rod : 3 @ﬁm

7.

wooden
4 collar

pendulum
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which was screwed to the collar on the pendulum. This design
was adopted to reduce play as much as possible in a horizontal
plane, while allowing free vertical motion.

The arm was provided with a counterpoise, and a sliding weight
(a large spring paper-clip serves very well) to vary the pressure
on the tracing-point or to remove it altogether from contact
with the paper. For the construction of the pen, see § 5.5.6.

5.5.5. Twin-elliptic pendulum. The alternative method of
applying both conical movements to the table, while keeping the
pen-arm fixed except for vertical motion, results in a machine of
a different type. In this machine, known as the twin-elliptic
pendulum, the table is carried as before on a pendulum, to the
lower end of which is attached a second ‘deflector’ pendulum.
The best arrangement is shown in Fig. 304. The pen-arm is now
hinged to a fixed support, and its suspension can be lighter and
narrower since it moves only up and down. If the table is to be
at a convenient height above the floor the pendulums must be
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about half the length of those in Fig. 301. The lower pendulum

can consist simply of a thread carrying a heavy bob, and fastened

to a hook at the lower end of the main pendulum.
Alternatively, the table (duly weighted) can itself form the
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bob of the upper pendulum, suspended from gimbals in the roof;
the lower pendulum being attached to a hook below the table.
A stirrup-shaped suspension of the table is necessary to allow
for the fixed pen-arm.

With this arrangement the ratio corresponding to that of the
periods of the independent pendulums in the two-pendulum
harmonograph is now the ratio of the periods of the normal
vibrations of the apparatus. These are the two modes of vibra-
tion in which the two pendulums remain in a vertical plane
which rotates about the vertical axis through the point of
suspension. In one, which has the longer period, the bobs are
on the same side of this axis. In the other they are on opposite
sides. It can be shown that when the ratio is m:n there will
be m—+n loops or cusps in the resulting curve when the pen-
dulums revolve in opposite directions (counter-current motion),
and m—mn when they revolve in the same direction (concurrent
motion). The 3:1 ratio is most interesting since it produces sym-
metrical curvesin both cases. Thishappens wheneverm andn are
both odd, so that 5: 3 is another such case, but frictional damping
will be more destructive of the symmetry when m and n are larger.

This machine has different characteristics from the two-
pendulum harmonograph. The latter gives some of its best
envelopes when the periods are nearly equal, which is impossible
for the twin-elliptic machine. On the other hand the twin-
elliptic gives better results for high ratios such as 3:1 or 5:2.
The ratio can be increased by either raising or lightening the
upper weight, or by raising or increasing the lower weight.

It is not easy at first to set a twin-elliptic pendulum in motion
in a counter-current manner, but if the ‘tuning’ of the periods
is carefully adjusted beforehand a little practice will enable
anyone to start the table moving in the desired figure. This will
be like a deltoid for a ratio of 2:1 and an astroid for 3:1, with
more camplex hypocycloids for other ratios. Full details are
given in Harmonic Vibrations and Vibration Figures, now,
unfortunately, out of print.

Some of the curves actually drawn by machines of these two
types are shown in Fig. 305.
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1. Two-pendulum harmonograph: 1:1, 180° phase difference, concurrent.
2. Two-pendulum harmonograph: 3:2, counter-current.

3. Twin-elliptic pendulum: 2:1, counter-current.

4. Twin-elliptic pendulum: 3- :1, concurrent.

6. Twin-elliptic pendulum: 3- :1, concurrent, deflexion almost linear.

6. Twin-elliptic pendulum: 3:1, counter-current.
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5.5.6. Construction of pens. The pen used in either type
of harmonograph can be either a steel nib provided with a glass
feed-tube, as shown in Fig. 301, or a glass pen as shown in
Fig. 304. A ball-pointed pen requires too much pressure. The
steel nib and feed-tube can be conveniently mounted in holes
drilled through a cube of wood which is attached to the pen-

—

! Glass tube drawn out toa fine point.

—

2 Point sealed in the flame.

—

3 Point ground until central hole appears

—

4 Shoulders rounded of ¥

Fi1c. 306. Stages in the manufacture of a glass pen.

arm. The single glass pen can be similarly supported, or merely
held in a spring clip of wire.

The glass pen, if well made, works more smoothly than the
steel nib, but it will not usually draw such fine lines, and a quick-
drying ink may be necessary to avoid smudging the pattern.

To make a glass pen, take a length of fine glass tubing—
standard wall tubing 4 to 6 mm. in diameter is best, not capillary
tubing—and heat it evenly at the centre in a gas flame. Draw
out the tube rapidly and separate the two halves, thus obtaining
two narrow drawn-out tubes as in Fig. 306 (1). These will be too
brittle for use as they are. To strengthen them, seal off the ends
at a point where the glass walls are not too fine (Fig. 306 (2)).
With carborundum paste, obtainable from a repair garage, care-
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fully grind down the sealed end of each tube until the tiniest
central hole appears (Fig. 306 (3)). The grinding should be done
on a glass plate with the pen held at right angles to it. Finally,
with a rolling action, holding the pen at an acute angle with the
plate, grind the shoulders smooth so that the pen has an even,
rounded point (Fig. 306 (4)). The line drawn on the paper will
be the full width of the pen-point, not merely the diameter of
the hole.

To fill the pen with ink, suck it up through the point, as in
a pipette. By this means particles large enough to clog the pen
are excluded. If the ink dries in the pen and clogs it, concen-
trated nitric acid will usually free it. Always wash out the pen
with clean water after use, and keep it in a beaker of water.

An expensive, but more durable alternative, is to use a
‘Rapidograph’ drawing pen with a fine bore, 0-2 or 0-3 mm.

Any writing-ink may be used, including coloured inks, but not
of course fixed Indian ink. For a quick-drying ink, ‘Indurite’
or hectograph ink may be recommended. A good bond writing-
paper is best, or, for more permanent work, a smooth thin paste-
board. Highly-glazed ‘art’ paper, loaded with china clay, should
not be used, as the filling quickly clogs the pen.

5.5.7. Meccanograph. A machine somewhat similar to the
harmonograph was described some years ago in the literature
supplied with Meccano sets. A table, made to oscillate in a
horizontal straight line by means of an eccentric drive from a
rotating shaft, carries the pivot of a pen-arm which is deflected
from side to side by another cam geared to the same shaft. The
pen carried by this arm traced the resulting curve on a rotating
table, driven by a worm-gear from the same motor as the rest
of the machine. By altering the position of the pivot, the
throws of the cams, and the gear ratios, many interesting and
repeatable patterns can be obtained of epicyclic type. From a
mathematical point of view however they are somewhat arti-
ficial, and their equations are complicated. If the table does not
rotate, curves approximating to Lissajous’s figures are described.
A full description of the machine is given on p. 61 of the current
Meccano Manual for Sets 7 and 8.



VI
MODELS FOR LOGIC AND COMPUTING

THERE have been many attempts to make a machine which
will solve simple logical problems, such as the following:

‘Mary will not serve on the Social Committee if Susan is on it.
John will only serve if Mary does. One of the girls must be on
the Committee. What combinations of these three candidates
are possible ?’

Most people will solve this readily in their heads, but in more
complicated problems a mechanical procedure may be helpful.
To see how simple cases can be solved mechanically assists in
understanding more elaborate machines; we shall therefore out-
line a method by which this can be done.

6.1. LogIicAL DEVICES

6.1.1. The propositional calculus

We begin by describing a symbolism which is a useful short-
hand. We let single letters p, g,... stand for statements, or propo-
sitions which may be true or false. If p is true, we say p has the
value 1; if p is false, the value 0. For example, in the above
problem we could put m for the statement ‘Mary is on the
committee’, and so on. Propositions can be related by logical
connectives. We write p.q for the compound statement ‘p and
q’; p.q is true if and only if both p and ¢ are true. The value of
p.q is the product of the values of p and q. We write p vV ¢ for
the compound statement ‘p or ¢ (or both)’. pV q is false if and
only if both p and ¢ are false. We write p = ¢ for the statement
‘if p, then ¢’. This means p cannot be true and ¢ false, so either
p is false or g is true, or both: i.e. ‘not-p, or ¢’. If two statements
P, q are true or false together we write p = ¢q (‘p is equivalent
to ¢’). If we write ~p for ‘not-p’ we cansay (p = q) = (~pVvq)
The reader can verify De Morgan’s Rules:

~(pVq) = (~p).(~q)
~(p.q9) = (~p)V (~9q).
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The values of these and other functions of p and g are con-
veniently exhibited in a truth-table; this gives the value of each
function corresponding to the four possible combinations of
values of p and gq.

P g ~p ~9 pqg pVqg p=>4qg p=q pF*Fq plg
11 0 o0 1 1 1 1 0 0
10 0 1 0 1 0 0 1 1
01 1 0 0 1 1 0 1 1
00 1 1 0 0 1 1 0 1

Thus p | g (‘p stroke ¢’) means ‘not both p and ¢’, or, by de Mor-
gan’s rule, ‘not-p, or not-q (or both)’. An example should make
the meaning of the table clear. The ‘1’ in the second row of the
last column but one means that p £ q is true if p is true and ¢
is false; i.e. that in that case ‘p is not the same as ¢q’.

We can now state our committee problem in the form

(8 = ~m).() = m).(sVm),

and we wish to find the values of s, m, and j for which this
function has the value 1. We can do this by constructing the
complete truth-table for the eight possible combinations of s,
m, and j. This, in fact, is how most simple logical machines
work. Alternatively we can develop an algebra for dealing with
the values of such expressions. We shall not develop this here,
since our object is to describe models, not to write a treatise on
propositional calculus. The interested reader can refer to books
in the bibliography. This particular problem, however, can be
quickly solved by noting that

(§ = ~m) = ~sV ~m; (~sV~m).(svVm) = (s & m).
Combining this with () = m) gives j.m, m, and s as the only
possible combinations. This is merely putting in symbols the
argument which most people would use.

6.1.2. Venn diagrams. Relations between propositions can
be illustrated in a simple way. We can regard a proposition p
as a way of selecting from the objects under discussion those for
which p is true. Thus m selects the committees which include
Mary. We represent this selection by the inside of a closed area
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a.b is then represented by the area common to the two areas a
and b; a v b by the area included in either or both. These areas
are shaded in the diagrams shown (Fig. 307). In practice it is

avb

-
o

+

a-b avb
@ O @ O
a=>b aldb
Fi1c. 308

usually better to shade the areas for which the statement is not
true; to save shading all the paper for ~a-~b we draw an
extra small circle to represent everything outside the @ and b
circles. Our diagram is now as shown in Fig. 308, and one or
two other examples are given. The shading excludes the regions
inconsistent with the truth of the proposition.

6.1.3. Window reading cards. The way to solve our prob-
lem is now clear. We must design cards to correspond to the
various Venn diagrams, with holes cut where the circles are
unshaded. We need a card for each compound statement. We
then superpose the cards and the solution appears through all
the cards. For our problem, suitable cards would be as shown
(Fig. 309):
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If the unshaded areas are cut away and the cards superposed,
it will be found that there is clear daylight through the areas

for j.m.~s, ~j.m.~s, and ~j.~m.s, which are the three
solutions.
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It is obviously wasteful to cut separate cards for every prob-
lem. What we want is a standard set, and preferably one in
which each card can be turned round, so that one and the same
card can be used for a = b, b = ¢, and ¢ = a. Also circles are
awkward to cut out. A set of this kind using hexagons is given
in the diagram, and is a modification of a system devised by
Martin Gardner of The Scientific American. The first card is a
base card, and is laid down first. The others have the shaded
areas cut out; they are turned so that the appropriate statement
appears at the bottom and are placed in any order on the base.
Possible true combinations appear through the windows. The
sixth card can be turned over to give b = a and so on; the others
are symmetrical.

6.2. PunxcHED CARDS

We can also solve problems of the same type with a set of
punched cards. For our problem with three propositions we
need 23 or 8 cards, each with three holes punched near the top
edge. The diagram shows a typical card for three propositions

a, b, and ¢ (Fig. 311).
U o o

~a b ¢

Fia. 311

This particular card represents the situation ~a.b.c; i.e. a is
false, while b and ¢ are true. It will be seen that ~a is repre-
sented by cutting a slot into the hole a; when a needle is inserted
into the hole a, the card will not be lifted with the needle but
will drop. Eight cards are prepared, one for each possible
combination of holes and slots. The cards for which a v b is true
can be selected by pushing two needles through the holes for a
and b simultaneously and lifting; the required cards will rise.
Those for which a.b is true can be selected by two operations;
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put the needle in a and lift and take the cards that rise; then
put the needle in hole b in these cards, and lift again. In practice
the cards should be stood upright in a wide box, and knitting-
needles can be used with great facility. The system obviously
extends easily to any number of propositions.

To solve our problem, we let a, b, ¢ now stand for ‘John is on
the committee’, ‘Mary is on’, and ‘Susan is on’. We have to
combine the statements a = b, b|c, bvc. The third statement
is the simplest; let us deal with it first. To do this we take two
needles and pass them through the b and ¢ holes. Then we lift,
and those that have holes at b or ¢ will rise. We take these and
pass to the first statement. Because of the way the cards are
made, we cannot deal with a V -operation with negatives in this
way. Instead we need two operations. Thus, to deal with the
first statement, we write it as ~avb. We spear a and take
the cards that drop (i.e. those that have ~a). Then we take the
remaining cards, spear b, take those that rise and put them with
the first group. Now we take these and use the second state-
ment. Here we spear b and ¢ in turn and take the cards which
drop each time. We are left with three cards: a, b, ~c; ~a, b, ~c;
~a, ~b, c; giving John and Mary but not Susan; Mary only;
Susan only. The procedure is not nearly so complicated to
carry out as it is to describe.

6.2.1. The binary scale. This system of slotting the cards
is, of course, equivalent to numbering them in the binary scale.
It is convenient to regard a hole as representing a zero digit, and
a slot as representing a unit. The card pictured above would
have the binary ‘code-number’ 100; if we regard these digits as
written in the normal order, with the least significant digit on
the right, this is the binary representation of the number 4. If
we have a set of 64 cards, for example, we can number them from
0 to 63 in the binary scale with 6 digits. For example, card
number 27 will have the digits 011011, standing for

00X 251X 20+ 1x2310x 221X 2+1.

Now cut slots in the cards for the 1-digits. Card number 27
appears as shown below (Fig. 312).
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This card can be picked out at once from the pack of 64. First of
all we push a needle through holes 1 and 4 (from the left) in turn
and lift ; then, taking the cards that rise, we spear four needles
through holes 2, 3, 5, 6; our card alone will be let fall. The pack

oUUoUU

0 1 1 0 1 1

@D

F1a. 312

demonstrates another remarkable fact; however it is shuffled it
can be restored to numerical order by six operations. Spear
each hole in turn, beginning at the right, and bring the cards
lifted by the needle to the front.

Many logical problems can be solved with such a pack of cards.
Plain card-index cards can be used; an ordinary paper-punch
will punch the holes and then the slots can be cut out with
scissors. A good deal of play is advisable in the box in which the
cards are stacked, or they will not separate easily.

6.3. ELEcTRIC CIRCUITS

So far our models have been mere toys, though the last is
useful in making catalogues that have to be sorted into alpha-
betical order. But if we translate the binary coding into
electrical circuits we are on the main road that leads to the
modern electronic computer.

We begin with a simple logical machine. If our propositions
a and ~a are represented by two-position switches, we can
make a mean ‘the switch 4 is on’, and ~a ‘the switch 4 is off ’.
Logical connectives between a and b can be shown by wiring
between switches 4 and B; for a v b we put 4 and B in parallel
(Fig. 313); if either switch is switched on, current will flow.
Fora.b we put 4 and B in series (Fig. 314); both switches must
now be on for current to pass.
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For other connectives we need two-way switches which show
both a and ~a. The ordinary two-way staircase switch is either
an @ = b or an a = b circuit according to how it is wired (see
Fig. 315).

6.3.1. A simple logical machine. To build the machine,
we need three three-pole two-way switches for 4, B, and C.
Rotary radio-type switches are very convenient. We also need
to connect them in various ways in accordance with the given
statements. To do this we must set up a socket board with a
row of sockets for each statement, labelled A4, a, ~a; B, b, ~b;
C, ¢, ~c. The A’s are connected to the three poles of switch A4,
by permanent wiring; the a’s to one set of corresponding output
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contacts of the switch, and the ~a’s to the other, as in Fig. 316.
(The suffixes refer to the rows of sockets.)

a, ~a,
®
r\/az.
a2 o a3
‘\/as
Fic. 316

Similarly for B and C.

Wiring for the connectives is alterable; short leads with plugs
at each end should be plugged into the sockets in accordance
with the schemes shown (Fig. 317). The reader can easily devise

N A a ~a B b ~b our
o—q ol o) \@/} o) o av b

Fic. 317

schemes for any other connectives that may be wanted. The
ingenious can construct permanent set-ups of plugs on a short
strip for each connective which is required, or standard octal
valve-base sockets and plugs can be used.
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A sketch of a complete machine is shown in Fig. 318, set up
for the problem at the beginning of the chapter.

a ~a b b ¢ ~c

&

R ] ] g

= i

TN A a~aB b ~b C c ~c out |

bem———Q 0 o,-—@’/o o © o o X) !
&__0:0 @8 o =0T p Y |

Fic. 318. Plug connexions; ----- hidden connexions (connoxions to
three-pole switches not shown). Machine set up for the problem

(@ = b).(b|c).(bve)

To operate the machine, switch on, and systematically run
through all the positions of switches 4, B, and C. The simplest
way to do this is to use the scheme of changes 4 BACA BA where
each letter indicates a reversal of the corresponding switch.
Note the combinations for which the lamp lights up. They are
the solutions of the problem.

The machine can obviously be extended indefinitely, but the
process of ‘scanning’ the entire truth-table by setting the
switches becomes tedious.

6.4. BINARY ADDITION

If we add two binary digits a and b, the sum digit and the
carry digit are seen in the following table:

a a
suM| 0 1 CARRY | 0 1
010 1 00 O

b b
1{1 O 110 1

In logical terms, the sum is the value of a £ b, the carry that of
a.b. A circuit to do this is easily devised. We need two-pole
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two-way switches for a and b; the wiring is shown in the diagram.
(The switches are all shown in the ‘0’ position.) The right half
of Fig. 319 is the circuit for the ‘carry’ digit. Current will pass
along the line ¢c; when both a and b are 1; i.e. ¢, gives the ‘carry’
digit @.b. But in addition a circuit is provided to carry 0, giving
current in ¢, when either a or b (or both) is 0; i.e. ¢, gives a | b.
The necessity for the ¢, line will appear later.

; -/Zj—— - — C,
SRS [ W W

Fia. 319

Fig. 319 thus shows a complete unit for adding two single
binary digits, ‘putting down’ the sum in the light L and ‘carry-
ing’ 0 or 1 to ¢, or c, respectively. Such a device is called a
half-adder.

Except at the least significant end of two binary numbers
which are to be added, there are three possible digits which have
to be added at each stage, since there may be a ‘carry in’ digit
as well as the two digits in the binary numbers; e.g. in the sum

111

110
1101

the third column from the right (the ‘fours’ column) contains
the addition of two 1’s and a carry of 1 from the twos column.
To effect this without the use of rectifiers four-pole switches are
needed, as shown in Fig. 320, though other arrangements are
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possible. The left-hand side of this diagram caters for the ‘put
down’ figure indicated by the light; the rest deals with the ‘carry
out’ to the next column. Note that these diagrams are shown
from the underneath or wiring side of the machine, so that the

»Co
C
| B O L

1 IJ ~1 =7

Fia. 320

least significant digit is on the left. On the upper (switch) side
the digits will be in conventional order.

It is now clear why a c, line is required, for we need to bring
up power to each stage even if there is 0 to carry. Power injected
separately at each stage could get back down the ¢, line to
earlier stages unless rectifiers were included. Power has to be
injected for the same reason to operate the outgoing c, line
when the a and b digits are both zero, since otherwise there
would have to be a connexion in this condition between the
ingoing ¢, and c, lines which would allow current to get back
into the previous stage.

To add two numbers from 0 to 15, four binary digits are needed
in each number and five in the answer. The least significant
digit requires a half-adder (Fig. 319), the remainder full adders;
except that the most significant full adder needs no ¢, carry-out
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line and it will be found that two three-pole switches suffice with
a minor rearrangement. Therefore for each number we need one
two-pole, one three-pole, and two four-pole two-way switches,
five flash-bulbs for displaying the answer—the final one con-
nected of course to the outgoing ¢, line—a simple chassis and a
battery.

Although an enterprising amateur can build for himself some
of the circuits actually found in a big electronic computer and
experiment with valves and transistors, the ideas and difficulties
involved belong rather to Physics than to Mathematics or Logic,
and we cannot enter upon them here.

6.5. ANALOGUE COMPUTERS

A digital computer operates with digits, usually binary, which
are either 1 or 0. They are represented by various physical
devices which are in one or other of two states—roughly speaking,
either ‘on’ or ‘off . An analogue computer, however, represents
numbers by physical quantities and operates on them physically,
not logically. These quantities may be voltages, resistances,
distances, rotations, or a variety of things; they will ultimately
be read on a scale of some kind. We have only space for a few.

6.5.1. The Wheatstone bridge. The Wheatstone bridge
circuit is, of course, a simple device for multiplication and
division. In the position of balance when no current flows
through the galvanometer G, R, R, = R, R,. The bridge is
customarily used to find unknown resistances, but if we use it
with known and calibrated resistances, it becomes a computing
device. The metre bridge can of course be used for accurate
work, but for demonstration R,, R,, R;, and R, may be wire-
wound linear potentiometers of the radio type, with rotary
knobs reading on calibrated dials. Simple scales suffice to find
products: set R, to a convenient unit and R, = R, X R,; or
quotients: R, = R, R;. 1f the dials are calibrated logarithmi-
cally for R; and R,, the bridge can be used to evaluate powers
and roots. Suppose the reading of R,’s knob is r,, where
logr; = R, and the same for R,, while R, and R, read linearly
as usual. Then the balance condition is R,logr, = R,logr, or
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ri = ri; r, therefore reads the value of 7I*/F:, A wide variety

of simple calculations can thus be carried out; for example we
may solve triangles by using a scale such that sinr; = Rj;, with
r, reading directly in degrees, and the same for r,; then R, : R,
is the ratio of the sides of a triangle opposite angles r; and r,.

Fic. 321

6.5.2. The high-gain amplifier. Inthisanalogue computer
the physical quantity which represents the number is a voltage.
The high-gain amplifier can be thought of as a device for main-
taining a voltage at very small levels at the input end—e.g. on
the grid of the first valve—while magnifying its changes into
very large voltages at the output end. The fundamental circuits
are shown in the diagrams. In the first circuit (Fig. 322a) there
is positive feedback through a resistance R, the current in which
is V(14-1/m)/ R, which must be the same as {—V,—V,/m}/R,,
neglecting grid current. Therefore, if m is large, we have effec-
tively V. R,+V, R, = 0. In the second arrangement (Fig. 322b)
with capacitative feedback, we have

- nedfe )

or, effe